organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3079-o3080

2-Cyano-5-({4-[N-methyl-N-(2-hy­dr­oxy­eth­yl)amino] phen­yl}diazen­yl)pyridine

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
*Correspondence e-mail: roberto.centore@unina.it

(Received 13 September 2012; accepted 2 October 2012; online 6 October 2012)

In the title compound, C15H15N5O, the benzene and pyridine rings make a dihedral angle of 30.86 (7)°. In the crystal, chains of mol­ecules are wrapped around the screw axes into compressed helices, through hydrogen bonding between the hy­droxy and cyano groups. The chains are linked by weak C—H⋯N and C—H⋯O inter­actions. The π conjugated unit of the mol­ecule is almost perpendicular to the helix axis, and the formation of the helix is allowed by a gauche-type torsion angle in the hy­droxy­ethyl tail. In this way, consecutive chromophore units along the chain are placed in a strict anti­parallel arrangement, and this is energetically favoured because of the high dipole moment of the mol­ecule.

Related literature

For general information on non-linear optical compounds, see: Singer et al. (1989[Singer, K. D., Sohn, J. E., King, L. A., Gordon, H. M., Katz, H. E. & Dirk, C. W. (1989). J. Opt. Soc. Am. B, 6, 1339-1350.]); Dalton (2002[Dalton, L. (2002). Adv. Polym. Sci. 158, 1-86.]). For structural and theoretical analysis of conjugation in push–pull mol­ecules, see: Gainsford et al. (2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.]); Centore et al. (2009[Centore, R., Fusco, S., Peluso, A., Capobianco, A., Stolte, M., Archetti, G. & Kuball, H.-G. (2009). Eur. J. Org. Chem. pp. 3535-3543.]); Capobianco et al. (2012[Capobianco, A., Esposito, A., Caruso, T., Borbone, F., Carella, A., Centore, R. & Peluso, A. (2012). Eur. J. Org. Chem. pp. 2980-2989.]). For the local packing modes of non-linear optical chromophores, see: Coe et al. (2000[Coe, B. J., Harris, J. A., Gelbrich, T. & Hursthouse, M. B. (2000). Acta Cryst. C56, 1487-1489.]); Thallapally et al. (2002[Thallapally, P. K., Desiraju, G. R., Bagieu-Beucher, M., Masse, R., Bourgogne, C. & Nicoud, J.-F. (2002). Chem. Commun. pp. 1052-1053.]); Centore et al. (2006[Centore, R., Carella, A., Pugliese, A., Sirigu, A. & Tuzi, A. (2006). Acta Cryst. C62, o531-o533.]). For theoretical computations on similar compounds, see: Willets et al. (1992[Willets, A., Rice, J. E. & Burland, D. M. (1992). J. Chem. Phys. 97, 7590-7599.]); Castaldo et al. (2002[Castaldo, A., Centore, R., Peluso, A., Sirigu, A. & Tuzi, A. (2002). Struct. Chem. 13, 27-36.]); Locatelli et al. (2005[Locatelli, D., Quici, S., Roberto, D. & De Angelis, F. (2005). Chem. Commun. pp. 5405-5407.]). For the CSD see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the synthesis of related compounds, see: Bruno et al. (2002[Bruno, V., Castaldo, A., Centore, R., Sirigu, A., Sarcinelli, F., Casalboni, M. & Pizzoferrato, R. (2002). J. Polym. Sci. Part A Polym. Chem. 40, 1468-1475.]); Centore et al. (2007[Centore, R., Riccio, P., Fusco, S., Carella, A., Quatela, A., Schutzmann, S., Stella, F. & De Matteis, F. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 2719-2725.]); Centore et al. (2012[Centore, R., Concilio, A., Borbone, F., Fusco, S., Carella, A., Roviello, A., Stracci, G. & Gianvito, A. (2012). J. Polym. Sci. Part B Polym. Phys. 50, 650-655.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N5O

  • Mr = 281.32

  • Monoclinic, P 21 /c

  • a = 17.755 (8) Å

  • b = 7.240 (4) Å

  • c = 11.045 (8) Å

  • β = 101.07 (5)°

  • V = 1393.4 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.996

  • 8528 measured reflections

  • 2403 independent reflections

  • 1336 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.02

  • 2403 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N5i 1.03 1.92 2.925 (4) 165
C6—H6⋯N4ii 0.93 2.74 3.637 (4) 162
C2—H2B⋯O1iii 0.97 2.68 3.369 (4) 129
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: CELLFITW (Centore, 2004[Centore, R. (2004). CELLFITW. Università degli Studi di Napoli "Federico II", Naples, Italy.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Organic nonlinear optical (NLO) chromophores are currently under investigation because of possible applications in optical data processing (Dalton, 2002). The chemical investigation is mainly directed to the synthesis of chromophores of increasing quadratic nonlinear optical activity. However, also the structural investigation of NLO chromophores is relevant, pointing towards the quantitative evaluation of the structural parameters related to the conjugation in push-pull molecules (Gainsford et al., 2008; Capobianco et al., 2012) and to the rationalization of the local packing modes of chromophore units (Coe et al., 2000; Thallapally et al., 2002; Centore et al., 2006).

Compound (I), 2-cyano-5-[4-(N-methyl-N-(2-hydroxyethyl)amino)- 1-diazenylphenyl]pyridine, is a typical push-pull azo-dye, containing the dialkylamino as donor group and the cyano as acceptor. Moreover, the cyano group is attached to an electron poor pyridine ring, and this should increase the electron withdrawing character. This compound has been used in the synthesis of cross-linked systems showing both piezoelectric and quadratic NLO behaviour (Centore et al., 2012).

The molecular structure of (I) is shown in Fig. 1. The geometry around the donor N1 atom is substantially planar indicating sp2 hybridization (the sum of valence angles at N1 is 360°) and the pattern of bond lenghts within the adjacent phenyl ring shows a certain degree of quinoidal character. All these structural features are in accordance with the expected π conjugation and push-pull character of the chromophore group.

The two aromatic rings are not coplanar, the dihedral angle between the mean planes being 30.86 (7)°; this twist, which is mainly due to a torsion around the bond N3—C10, is not expected to negatively affect the quadratic NLO performances of the molecule, as it has been proved both theoretically and experimentally for similar chromophores (Castaldo et al., 2002; Locatelli et al., 2005).

Nonlinear optical properties of (I) have been determined by means of electro-optical absorption spectroscopy measurements in dioxane solution (Centore et al., 2009). Relevant data are given in the Experimental part. We note that the dipole moment of the ground state is rather high and also the change in dipole moment between the ground and the first excited state is high, coherently with the expected charge-transfer character of the HOMO-LUMO transition. The quadratic NLO activity of (I), measured by the µβ0 product, is also significant, if we consider the simple chemical structure of the compound, and is comparable with the NLO reference compound DANS (Singer et al., 1989).

Molecules in the crystal form rows through hydrogen bonds between hydroxy and cyano groups of consecutive molecules, Fig. 2 and Table 1. The chains, which have graph set symbol C11(17), are wrapped around crystallographic binary screw axes. Actually, the pitch of the helix (b=7.240 (4) Å) is very short, as compared with the length of the molecule (N5···O1= 14.818 (8) Å), so the helix is very compressed; in fact, the π conjugated unit of the molecule is almost perpendicular to the helix axis, and the formation of the helix is is allowed by a gauche-type torsion angle in the hydroxyethyl tail. In this way, consecutive chromophore units along the chain are placed in a strict antiparallel arrangement, and this is energetically favoured because of the high dipole moment of the molecule.

Along (b+c) and a+b directions, the chains are held by weaker interactions involving C—H aromatic donor and pyridine N acceptor groups or C—H aliphatic donor and O acceptor groups (Fig. 3 and Table 1). Two dimeric ring patterns can be recognized, having graph set symbols R22(16) and R22(8); both are formed across crystallographic inversion centers.

A search within CSD (version 5.33) (Allen, 2002) has shown that these patterns are unprecedented in compounds containing N-methyl-N-2- hydroxyethylamino and azopyridyl-benzene mojeties.

Related literature top

For general information on non-linear optical compounds, see: Singer et al. (1989); Dalton (2002). For structural and theoretical analysis of conjugation in push–pull molecules, see: Gainsford et al. (2008); Centore et al. (2009); Capobianco et al. (2012). For the local packing modes of non-linear optical chromophores, see: Coe et al. (2000); Thallapally et al. (2002); Centore et al. (2006). For theoretical computations on similar compounds, see: Willets et al. (1992); Castaldo et al. (2002); Locatelli et al. (2005). For the CSD see: Allen (2002). For the synthesis of related compounds, see: Bruno et al. (2002); Centore et al. (2007); Centore et al. (2012).

Experimental top

(I) was prepared by diazotization of 5-amino-2-cyanopyridine followed by coupling with N-methyl-N-(2-hydroxyethyl)aniline. The procedure of diazo-coupling is analogous to that we have already described for the synthesis of similar diazo-chromophores (Bruno et al., 2002; Centore et al., 2007; Centore et al., 2012). Purification of (I) was obtained by recrystallization from ethanol. The final yield for the diazotization/coupling step was 69%. Mp. 166 °C. Single crystals were obtained by slow evaporation from ethanol solutions. 1H-NMR (py-d5) δ 3.06 (3, 3H), 3.71 (t, 2H), 4.00 (t, 2H), 4.80 (s, 1H), 6.92 (d, 2H, J = 11 Hz), 7.84–8.19 (m, 4H), 9.26 (d, 1H, J = 2.6 Hz). Electro-optical absorption spectroscopy data of (I) (dioxane solution; quadratic hyperpolarizability is given according to the phenomenological convention (X convention) (Willets et al., 1992)): λmax = 461.3 nm, µg = 8.16 D, Δµ = 12.5 D, β0 = 69×10-30 esu, µgβ0 = 566×10-48 esu.

Refinement top

The H atom of the hydroxy group was located in difmap. All other H atoms were generated stereochemically. All H atoms were refined by the riding model with Uiso=1.2×Ueq of the carrier atom (1.5 for H atoms of the methyl group).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: CELLFITW (Centore, 2004); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecular structure of (I). Thermal ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Row of H-bonded molecules of (I).
[Figure 3] Fig. 3. Lateral packing of (I) along b.
2-Cyano-5-({4-[N-methyl-N-(2-hydroxyethyl)amino] phenyl}diazenyl)pyridine top
Crystal data top
C15H15N5ODx = 1.341 Mg m3
Mr = 281.32Melting point: 439 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.755 (8) ÅCell parameters from 76 reflections
b = 7.240 (4) Åθ = 5.6–23.2°
c = 11.045 (8) ŵ = 0.09 mm1
β = 101.07 (5)°T = 293 K
V = 1393.4 (14) Å3Plate, red
Z = 40.40 × 0.10 × 0.05 mm
F(000) = 592
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2403 independent reflections
Radiation source: fine-focus sealed tube1336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.1°
CCD rotation images, thick slices scansh = 2021
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 78
Tmin = 0.965, Tmax = 0.996l = 1311
8528 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.0464P]
where P = (Fo2 + 2Fc2)/3
2403 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H15N5OV = 1393.4 (14) Å3
Mr = 281.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.755 (8) ŵ = 0.09 mm1
b = 7.240 (4) ÅT = 293 K
c = 11.045 (8) Å0.40 × 0.10 × 0.05 mm
β = 101.07 (5)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2403 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1336 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.996Rint = 0.069
8528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2403 reflectionsΔρmin = 0.21 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39381 (17)0.5114 (4)0.0089 (3)0.0658 (9)
H1A0.41010.46520.08210.079*
H1B0.33980.54310.03140.079*
C20.40363 (16)0.3604 (3)0.0877 (3)0.0539 (7)
H2A0.37630.25110.05230.065*
H2B0.45760.32900.11020.065*
C30.43153 (16)0.4817 (4)0.3024 (3)0.0634 (8)
H3A0.43550.39730.37040.095*
H3B0.41540.60040.32660.095*
H3C0.48060.49310.27880.095*
C40.29960 (14)0.4002 (3)0.2038 (2)0.0389 (6)
C50.27273 (14)0.4488 (3)0.3117 (2)0.0426 (7)
H50.30730.49060.38030.051*
C60.19600 (15)0.4353 (3)0.3169 (2)0.0416 (6)
H60.17990.46640.38950.050*
C70.14206 (14)0.3759 (3)0.2154 (2)0.0356 (6)
C80.16750 (14)0.3312 (3)0.1079 (2)0.0412 (6)
H80.13220.29410.03880.049*
C90.24378 (14)0.3407 (3)0.1019 (2)0.0423 (7)
H90.25930.30720.02920.051*
C100.03818 (14)0.3687 (3)0.3055 (2)0.0377 (6)
C110.09206 (15)0.4028 (3)0.2005 (2)0.0445 (7)
H110.07700.42550.12580.053*
C120.16836 (15)0.4026 (3)0.2081 (2)0.0479 (7)
H120.20610.42500.13870.058*
C130.18771 (15)0.3687 (3)0.3206 (3)0.0420 (6)
C140.06318 (15)0.3353 (3)0.4146 (2)0.0484 (7)
H140.02640.31240.48520.058*
C150.26695 (18)0.3730 (3)0.3352 (3)0.0519 (7)
N10.37562 (12)0.4124 (3)0.1987 (2)0.0459 (6)
N20.06251 (12)0.3612 (2)0.21080 (19)0.0417 (5)
N30.04319 (12)0.3723 (3)0.3147 (2)0.0455 (6)
N40.13639 (13)0.3339 (3)0.4246 (2)0.0493 (6)
N50.32935 (16)0.3783 (3)0.3473 (3)0.0743 (8)
O10.43618 (12)0.6724 (3)0.0323 (2)0.0771 (7)
H1O0.40680.75880.08160.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (19)0.093 (2)0.063 (2)0.0003 (17)0.0247 (16)0.0034 (17)
C20.0400 (17)0.0608 (17)0.067 (2)0.0028 (13)0.0272 (15)0.0057 (14)
C30.0399 (18)0.086 (2)0.064 (2)0.0063 (15)0.0079 (16)0.0043 (16)
C40.0361 (17)0.0363 (14)0.0476 (17)0.0008 (11)0.0161 (13)0.0059 (11)
C50.0417 (17)0.0504 (15)0.0365 (16)0.0018 (11)0.0096 (13)0.0015 (11)
C60.0458 (18)0.0425 (14)0.0411 (16)0.0033 (11)0.0202 (14)0.0034 (11)
C70.0308 (15)0.0362 (13)0.0420 (16)0.0004 (10)0.0128 (13)0.0053 (11)
C80.0390 (17)0.0465 (15)0.0391 (16)0.0018 (11)0.0102 (13)0.0007 (11)
C90.0440 (18)0.0458 (15)0.0411 (17)0.0047 (12)0.0186 (13)0.0054 (11)
C100.0328 (16)0.0368 (14)0.0464 (17)0.0024 (10)0.0152 (13)0.0026 (11)
C110.0447 (18)0.0501 (15)0.0432 (17)0.0018 (12)0.0195 (14)0.0005 (11)
C120.0415 (19)0.0572 (17)0.0463 (18)0.0016 (12)0.0113 (14)0.0006 (12)
C130.0404 (17)0.0366 (14)0.0537 (18)0.0061 (11)0.0207 (15)0.0089 (12)
C140.0409 (19)0.0608 (17)0.0449 (18)0.0036 (13)0.0117 (14)0.0022 (12)
C150.049 (2)0.0473 (16)0.064 (2)0.0056 (13)0.0236 (16)0.0076 (13)
N10.0332 (14)0.0546 (13)0.0525 (15)0.0002 (10)0.0153 (11)0.0010 (10)
N20.0466 (16)0.0383 (12)0.0435 (14)0.0014 (9)0.0174 (11)0.0022 (9)
N30.0462 (16)0.0468 (12)0.0469 (14)0.0011 (10)0.0180 (11)0.0027 (10)
N40.0442 (16)0.0613 (14)0.0461 (15)0.0063 (11)0.0183 (12)0.0022 (10)
N50.0514 (19)0.0733 (17)0.108 (2)0.0089 (13)0.0397 (16)0.0089 (15)
O10.0668 (16)0.0722 (14)0.1043 (18)0.0004 (11)0.0466 (13)0.0101 (12)
Geometric parameters (Å, º) top
C1—O11.414 (3)C7—N21.408 (3)
C1—C21.514 (4)C8—C91.370 (3)
C1—H1A0.9700C8—H80.9300
C1—H1B0.9700C9—H90.9300
C2—N11.458 (3)C10—C111.376 (4)
C2—H2A0.9700C10—C141.383 (3)
C2—H2B0.9700C10—N31.429 (3)
C3—N11.454 (3)C11—C121.373 (3)
C3—H3A0.9600C11—H110.9300
C3—H3B0.9600C12—C131.373 (3)
C3—H3C0.9600C12—H120.9300
C4—N11.365 (3)C13—N41.346 (3)
C4—C51.410 (3)C13—C151.447 (4)
C4—C91.416 (3)C14—N41.325 (3)
C5—C61.378 (3)C14—H140.9300
C5—H50.9300C15—N51.142 (3)
C6—C71.395 (3)N2—N31.262 (3)
C6—H60.9300O1—H1O1.0341
C7—C81.387 (3)
O1—C1—C2112.8 (2)C9—C8—C7121.1 (2)
O1—C1—H1A109.0C9—C8—H8119.4
C2—C1—H1A109.0C7—C8—H8119.4
O1—C1—H1B109.0C8—C9—C4121.6 (2)
C2—C1—H1B109.0C8—C9—H9119.2
H1A—C1—H1B107.8C4—C9—H9119.2
N1—C2—C1113.2 (2)C11—C10—C14118.5 (2)
N1—C2—H2A108.9C11—C10—N3125.9 (2)
C1—C2—H2A108.9C14—C10—N3115.5 (2)
N1—C2—H2B108.9C12—C11—C10118.9 (3)
C1—C2—H2B108.9C12—C11—H11120.6
H2A—C2—H2B107.8C10—C11—H11120.6
N1—C3—H3A109.5C13—C12—C11118.5 (3)
N1—C3—H3B109.5C13—C12—H12120.8
H3A—C3—H3B109.5C11—C12—H12120.8
N1—C3—H3C109.5N4—C13—C12124.0 (3)
H3A—C3—H3C109.5N4—C13—C15115.0 (2)
H3B—C3—H3C109.5C12—C13—C15121.0 (3)
N1—C4—C5121.1 (2)N4—C14—C10123.9 (3)
N1—C4—C9122.2 (2)N4—C14—H14118.1
C5—C4—C9116.6 (2)C10—C14—H14118.1
C6—C5—C4121.0 (2)N5—C15—C13179.3 (3)
C6—C5—H5119.5C4—N1—C3121.4 (2)
C4—C5—H5119.5C4—N1—C2121.2 (2)
C5—C6—C7121.3 (2)C3—N1—C2117.4 (2)
C5—C6—H6119.3N3—N2—C7114.1 (2)
C7—C6—H6119.3N2—N3—C10112.4 (2)
C8—C7—C6118.3 (2)C14—N4—C13116.2 (2)
C8—C7—N2116.1 (2)C1—O1—H1O112.1
C6—C7—N2125.6 (2)
O1—C1—C2—N162.7 (3)C11—C10—C14—N40.0 (3)
N1—C4—C5—C6179.6 (2)N3—C10—C14—N4177.4 (2)
C9—C4—C5—C61.1 (3)C5—C4—N1—C32.1 (3)
C4—C5—C6—C71.0 (3)C9—C4—N1—C3177.2 (2)
C5—C6—C7—C80.3 (3)C5—C4—N1—C2179.4 (2)
C5—C6—C7—N2178.6 (2)C9—C4—N1—C21.4 (3)
C6—C7—C8—C91.5 (3)C1—C2—N1—C482.0 (3)
N2—C7—C8—C9180.0 (2)C1—C2—N1—C396.6 (3)
C7—C8—C9—C41.4 (3)C8—C7—N2—N3168.65 (18)
N1—C4—C9—C8179.2 (2)C6—C7—N2—N313.0 (3)
C5—C4—C9—C80.1 (3)C7—N2—N3—C10176.23 (17)
C14—C10—C11—C120.1 (3)C11—C10—N3—N218.0 (3)
N3—C10—C11—C12176.9 (2)C14—C10—N3—N2164.91 (19)
C10—C11—C12—C130.1 (3)C10—C14—N4—C130.4 (3)
C11—C12—C13—N40.6 (4)C12—C13—N4—C140.7 (3)
C11—C12—C13—C15177.8 (2)C15—C13—N4—C14177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N5i1.031.922.925 (4)165
C6—H6···N4ii0.932.743.637 (4)162
C2—H2B···O1iii0.972.683.369 (4)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H15N5O
Mr281.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.755 (8), 7.240 (4), 11.045 (8)
β (°) 101.07 (5)
V3)1393.4 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.10 × 0.05
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.965, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
8528, 2403, 1336
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.139, 1.02
No. of reflections2403
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: COLLECT (Nonius, 1999), CELLFITW (Centore, 2004), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N5i1.031.922.925 (4)165
C6—H6···N4ii0.932.743.637 (4)162
C2—H2B···O1iii0.972.683.369 (4)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Centro Inter­dipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II". Thanks are also due to Professor H.-G. Kuball for the spectroscopic measurements.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, V., Castaldo, A., Centore, R., Sirigu, A., Sarcinelli, F., Casalboni, M. & Pizzoferrato, R. (2002). J. Polym. Sci. Part A Polym. Chem. 40, 1468–1475.  Web of Science CrossRef CAS Google Scholar
First citationCapobianco, A., Esposito, A., Caruso, T., Borbone, F., Carella, A., Centore, R. & Peluso, A. (2012). Eur. J. Org. Chem. pp. 2980–2989.  Web of Science CSD CrossRef Google Scholar
First citationCastaldo, A., Centore, R., Peluso, A., Sirigu, A. & Tuzi, A. (2002). Struct. Chem. 13, 27–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationCentore, R. (2004). CELLFITW. Università degli Studi di Napoli "Federico II", Naples, Italy.  Google Scholar
First citationCentore, R., Carella, A., Pugliese, A., Sirigu, A. & Tuzi, A. (2006). Acta Cryst. C62, o531–o533.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCentore, R., Concilio, A., Borbone, F., Fusco, S., Carella, A., Roviello, A., Stracci, G. & Gianvito, A. (2012). J. Polym. Sci. Part B Polym. Phys. 50, 650–655.  Web of Science CrossRef CAS Google Scholar
First citationCentore, R., Fusco, S., Peluso, A., Capobianco, A., Stolte, M., Archetti, G. & Kuball, H.-G. (2009). Eur. J. Org. Chem. pp. 3535–3543.  Web of Science CrossRef Google Scholar
First citationCentore, R., Riccio, P., Fusco, S., Carella, A., Quatela, A., Schutzmann, S., Stella, F. & De Matteis, F. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 2719–2725.  Web of Science CrossRef CAS Google Scholar
First citationCoe, B. J., Harris, J. A., Gelbrich, T. & Hursthouse, M. B. (2000). Acta Cryst. C56, 1487–1489.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDalton, L. (2002). Adv. Polym. Sci. 158, 1–86.  CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLocatelli, D., Quici, S., Roberto, D. & De Angelis, F. (2005). Chem. Commun. pp. 5405–5407.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinger, K. D., Sohn, J. E., King, L. A., Gordon, H. M., Katz, H. E. & Dirk, C. W. (1989). J. Opt. Soc. Am. B, 6, 1339–1350.  CrossRef CAS Web of Science Google Scholar
First citationThallapally, P. K., Desiraju, G. R., Bagieu-Beucher, M., Masse, R., Bourgogne, C. & Nicoud, J.-F. (2002). Chem. Commun. pp. 1052–1053.  Web of Science CSD CrossRef Google Scholar
First citationWillets, A., Rice, J. E. & Burland, D. M. (1992). J. Chem. Phys. 97, 7590–7599.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3079-o3080
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds