organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-1H-1,3-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cInstitute of Nanmaterials and Nanotechnology, MASCIR, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: d_belaziz@yahoo.fr

(Received 9 October 2012; accepted 21 October 2012; online 27 October 2012)

The fused five- and six-membered rings in the title compound, C10H10N2O, are approximately coplanar, with an r.m.s. deviation of 0.008 Å. The mean plane of the allyl group is roughly perpendicular to the mean plane of the 1,3-benzimidazol-2(3H)-one system, making a dihedral angle of 86.1 (2)°. In the crystal, each mol­ecule is linked to its symmetry equivalent partner by a pair of N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the pharmacological and biochemical properties of the title compound, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998..]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]). For compounds with similar structures, see: Belaziz et al. (2012[Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.]); Ouzidan et al. (2011[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O

  • Mr = 174.20

  • Monoclinic, P 21 /c

  • a = 10.2749 (5) Å

  • b = 5.5787 (3) Å

  • c = 16.6220 (9) Å

  • β = 100.976 (4)°

  • V = 935.35 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.38 × 0.29 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 13429 measured reflections

  • 2570 independent reflections

  • 1393 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.04

  • 2570 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.00 2.8274 (14) 161
C3—H3⋯O1ii 0.93 2.52 3.3080 (19) 142
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al. 1994; Horton et al. 2003; Kim et al. 1996; Roth et al. 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Belaziz et al., 2012; Ouzidan et al. 2011), we reported in this paper the synthesis of new benzimidazol-2-one derivative by action of allyl bromide with 1H-1,3-benzimidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish mono-substituted compound (Scheme 1).

The crystal structure of the 1-allyl-1H-1,3-benzimidazol-2(3H)-one molecule is built up from fused six-and five-membered rings linked to C3H5 chain as shown in Fg.1. The fused-ring system is essentially planar, with a maximum deviation of -0.010 (1) Å for C10. The allyl group is nearly perpendicular to the 1H-1,3-benzimidazol-2(3H)-one plane as indicated by the torsion angle of C8 C7 N1 C6 - 70.44 (18)°. In the crystal, each molecule and its symmetry through the inversion center are linked by N2—H2···O1 and C3—H3···O1 hydrogen bonds in the way to form dimers as shown in Fig.2.

Related literature top

For the pharmacological and biochemical properties of the title compound, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For compounds with similar structures, see: Belaziz et al. (2012); Ouzidan et al. (2011).

Experimental top

To 1H-1,3-benzimidazol-2(3H)-one (0.2 g, 1.49 mmol), potassium carbonate (0.41 g, 2.98 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added allyl bromide (0.14 ml, 1.78 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The product was obtained with quantitative yield of 70%. It was recrystallized from hexan/acetate to give colourless crystals.

Refinement top

H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene). with Uiso(H) = 1.2 Ueq (aromatic, methylene).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Molecule and its symmetry through the inversion center linked by hydrogen bonds and building dimers.
1-Allyl-1H-1,3-benzimidazol-2(3H)-one top
Crystal data top
C10H10N2OF(000) = 368
Mr = 174.20Dx = 1.237 Mg m3
Monoclinic, P21/cMelting point: 342.7 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.2749 (5) ÅCell parameters from 2570 reflections
b = 5.5787 (3) Åθ = 2.9–29.4°
c = 16.6220 (9) ŵ = 0.08 mm1
β = 100.976 (4)°T = 296 K
V = 935.35 (8) Å3Block, colourless
Z = 40.38 × 0.29 × 0.27 mm
Data collection top
Bruker X8 APEX
diffractometer
1393 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 29.4°, θmin = 2.9°
ϕ and ω scansh = 1314
13429 measured reflectionsk = 77
2570 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0584P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2570 reflectionsΔρmax = 0.14 e Å3
120 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (4)
Crystal data top
C10H10N2OV = 935.35 (8) Å3
Mr = 174.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2749 (5) ŵ = 0.08 mm1
b = 5.5787 (3) ÅT = 296 K
c = 16.6220 (9) Å0.38 × 0.29 × 0.27 mm
β = 100.976 (4)°
Data collection top
Bruker X8 APEX
diffractometer
1393 reflections with I > 2σ(I)
13429 measured reflectionsRint = 0.046
2570 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
2570 reflectionsΔρmin = 0.14 e Å3
120 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64101 (14)0.3295 (2)0.87918 (9)0.0444 (4)
C20.63854 (16)0.3098 (3)0.79675 (9)0.0549 (4)
H2A0.59370.18510.76620.066*
C30.70534 (18)0.4825 (3)0.76048 (9)0.0638 (5)
H30.70560.47320.70460.077*
C40.77162 (19)0.6684 (3)0.80584 (10)0.0651 (5)
H40.81530.78200.77980.078*
C50.77454 (16)0.6892 (2)0.88889 (10)0.0557 (4)
H50.81890.81490.91910.067*
C60.70925 (14)0.5166 (2)0.92520 (8)0.0436 (4)
C70.74323 (15)0.6384 (2)1.07492 (9)0.0512 (4)
H7A0.70200.59281.12050.061*
H7B0.71800.80271.06050.061*
C80.88971 (17)0.6264 (3)1.10148 (10)0.0656 (5)
H80.91910.46021.11440.105 (7)*
C90.9688 (2)0.8074 (4)1.11471 (13)0.0968 (7)
H9A1.07140.79451.13460.116*
H9B0.92560.97021.10480.116*
C100.61611 (15)0.2860 (2)1.01062 (9)0.0441 (4)
N10.69312 (11)0.48505 (18)1.00561 (7)0.0452 (3)
N20.58638 (12)0.19162 (19)0.93391 (7)0.0481 (3)
H20.54010.06400.92100.058*
O10.58255 (11)0.21105 (17)1.07330 (6)0.0559 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (9)0.0445 (7)0.0468 (9)0.0002 (5)0.0072 (7)0.0025 (6)
C20.0578 (11)0.0578 (9)0.0476 (10)0.0040 (7)0.0064 (8)0.0033 (6)
C30.0733 (13)0.0750 (11)0.0442 (9)0.0033 (8)0.0137 (8)0.0056 (7)
C40.0751 (13)0.0680 (11)0.0555 (11)0.0120 (8)0.0205 (9)0.0106 (8)
C50.0597 (11)0.0523 (9)0.0567 (10)0.0101 (7)0.0149 (8)0.0027 (6)
C60.0417 (9)0.0443 (7)0.0451 (8)0.0006 (6)0.0091 (6)0.0028 (5)
C70.0556 (11)0.0511 (8)0.0483 (9)0.0034 (6)0.0132 (8)0.0068 (6)
C80.0591 (12)0.0633 (11)0.0695 (12)0.0024 (8)0.0001 (9)0.0102 (8)
C90.0674 (15)0.0902 (15)0.130 (2)0.0206 (10)0.0128 (13)0.0189 (12)
C100.0420 (9)0.0437 (7)0.0469 (9)0.0000 (6)0.0090 (7)0.0037 (6)
N10.0476 (8)0.0444 (6)0.0442 (7)0.0063 (5)0.0106 (6)0.0014 (4)
N20.0514 (8)0.0439 (6)0.0491 (8)0.0094 (5)0.0100 (6)0.0008 (5)
O10.0631 (8)0.0575 (6)0.0491 (7)0.0111 (5)0.0159 (6)0.0066 (4)
Geometric parameters (Å, º) top
C1—C21.370 (2)C7—N11.4487 (17)
C1—N21.3890 (17)C7—C81.487 (2)
C1—C61.4007 (18)C7—H7A0.9700
C2—C31.386 (2)C7—H7B0.9700
C2—H2A0.9300C8—C91.288 (2)
C3—C41.383 (2)C8—H80.9858
C3—H30.9300C9—H9A1.0463
C4—C51.380 (2)C9—H9B1.0104
C4—H40.9300C10—O11.2313 (16)
C5—C61.3768 (19)C10—N21.3594 (17)
C5—H50.9300C10—N11.3751 (17)
C6—N11.3890 (16)N2—H20.8600
C2—C1—N2132.67 (13)C8—C7—H7A108.9
C2—C1—C6121.20 (13)N1—C7—H7B108.9
N2—C1—C6106.13 (12)C8—C7—H7B108.9
C1—C2—C3117.58 (14)H7A—C7—H7B107.7
C1—C2—H2A121.2C9—C8—C7125.79 (19)
C3—C2—H2A121.2C9—C8—H8122.9
C4—C3—C2121.15 (15)C7—C8—H8111.0
C4—C3—H3119.4C8—C9—H9A124.4
C2—C3—H3119.4C8—C9—H9B115.7
C5—C4—C3121.56 (14)H9A—C9—H9B119.9
C5—C4—H4119.2O1—C10—N2127.79 (13)
C3—C4—H4119.2O1—C10—N1125.63 (13)
C6—C5—C4117.39 (14)N2—C10—N1106.57 (12)
C6—C5—H5121.3C10—N1—C6109.64 (11)
C4—C5—H5121.3C10—N1—C7123.39 (12)
C5—C6—N1131.91 (13)C6—N1—C7126.93 (11)
C5—C6—C1121.11 (13)C10—N2—C1110.67 (12)
N1—C6—C1106.97 (11)C10—N2—H2124.7
N1—C7—C8113.31 (12)C1—N2—H2124.7
N1—C7—H7A108.9
N2—C1—C2—C3179.87 (15)N2—C10—N1—C61.06 (15)
C6—C1—C2—C30.4 (2)O1—C10—N1—C71.5 (2)
C1—C2—C3—C40.2 (3)N2—C10—N1—C7178.85 (12)
C2—C3—C4—C50.3 (3)C5—C6—N1—C10178.59 (15)
C3—C4—C5—C60.3 (3)C1—C6—N1—C100.59 (15)
C4—C5—C6—N1179.99 (14)C5—C6—N1—C70.9 (2)
C4—C5—C6—C10.9 (2)C1—C6—N1—C7178.28 (13)
C2—C1—C6—C51.0 (2)C8—C7—N1—C10112.16 (16)
N2—C1—C6—C5179.39 (13)C8—C7—N1—C670.44 (18)
C2—C1—C6—N1179.73 (12)O1—C10—N2—C1179.19 (14)
N2—C1—C6—N10.11 (15)N1—C10—N2—C11.14 (15)
N1—C7—C8—C9130.56 (19)C2—C1—N2—C10179.66 (15)
O1—C10—N1—C6179.26 (13)C6—C1—N2—C100.79 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.002.8274 (14)161
C3—H3···O1ii0.932.523.3080 (19)142
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10N2O
Mr174.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2749 (5), 5.5787 (3), 16.6220 (9)
β (°) 100.976 (4)
V3)935.35 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.29 × 0.27
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13429, 2570, 1393
Rint0.046
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.04
No. of reflections2570
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.002.8274 (14)161
C3—H3···O1ii0.932.523.3080 (19)142
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBelaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998..  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds