[Journal logo]

Volume 68 
Part 11 
Pages o3149-o3150  
November 2012  

Received 5 September 2012
Accepted 1 October 2012
Online 20 October 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.008 Å
R = 0.054
wR = 0.102
Data-to-parameter ratio = 7.5
Details
Open access

Tris[(6S)-6-hydroxy-4-epi-shikimic acid] monohydrate: an enantiomerically pure hydroxylated shikimic acid derived from methyl shikimate

aDepartment of Chemistry, University of Cologne, Greinstr. 4, 50939 Koeln, Germany
Correspondence e-mail: griesbeck@uni-koeln.de

The title compound, 3C7H10O6·H2O, is the enantiomerically pure product of a multi-step synthesis from the enantiomerically pure natural shikimic acid. The asymmetric unit contains three molecules of the acid and one molecule of water. The cyclohexene rings of the acids have half-chair conformations. The carboxylate, the four hydroxide groups and the additional water molecule form a complex three-dimensional hydrogen-bonding network.

Related literature

A series of antitumor-active marine natural carbasugars has been isolated in the last two decades with a cyclohexene-1-carboxylate core structure and four contiguous stereogenic centers (Numata et al., 1997[Numata, A., Iritani, M., Yamada, T., Minoura, K., Matsumura, E., Yamori, T. & Tsuruo, T. (1997). Tetrahedron Lett. 38, 8215-8218.]). The relative configuration of these compounds, the pericosines, has been a matter of debate since the first reports on the isolation (Usami et al., 2008[Usami, Y., Mizuki, K., Ichikawa, H. & Arimoto, M. (2008). Tetrahedron Asymmetry, 19, 1461-1464.], 2009[Usami, Y., Ohsugi, M., Mizuki, K., Ichikawa, H. & Arimoto, M. (2009). Org. Lett. 11, 2699-2701.]). By means of detailed NMR analysis of the natural compound pericosine D0 and comparison with the NMR data published for the 6-hydroxy-5-epishikimic acid described herein, the absolute and relative configuration was established (Usami et al., 2006[Usami, Y., Horibe, Y., Takaoka, I., Ichikawa, H. & Arimoto, M. (2006). Synlett, 10, 1598-1600.], 2011[Usami, Y. & Mizuki, K. (2011). J. Nat. Prod. 74, 877-881.]). This reveals the importance of this X-ray crystallographic determination that finally proves the assignments that resulted from spectroscopic analyses. For the synthesis, see: Griesbeck et al. (2007[Griesbeck, A. G., Miara, C. & Neudörfl, J. (2007). Arkivoc, 8, 216-223.]).

[Scheme 1]

Experimental

Crystal data
  • 3C7H10O6·H2O

  • Mr = 588.47

  • Monoclinic, P 21

  • a = 11.2561 (17) Å

  • b = 7.7049 (11) Å

  • c = 13.9688 (14) Å

  • [beta] = 91.672 (8)°

  • V = 1211.0 (3) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.15 mm-1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5629 measured reflections

  • 2786 independent reflections

  • 1399 reflections with I > 2[sigma](I)

  • Rint = 0.085

Refinement
  • R[F2 > 2[sigma](F2)] = 0.054

  • wR(F2) = 0.102

  • S = 0.88

  • 2786 reflections

  • 371 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.27 e Å-3

  • [Delta][rho]min = -0.28 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2-H2...O1Ai 0.84 1.81 2.624 (5) 164
O3-H3...O4Aii 0.84 1.90 2.705 (5) 161
O4-H4...O6iii 0.84 1.94 2.738 (6) 157
O5-H5...O6Biv 0.84 2.08 2.736 (5) 134
O6-H6...O3iii 0.84 1.89 2.718 (6) 169
O6A-H6A...O3Av 0.84 1.99 2.764 (6) 153
O4A-H4A...O6Av 0.84 1.88 2.712 (6) 168
O5B-H5B...O5 0.84 1.93 2.765 (5) 171
O5A-H5A...O3B 0.84 2.06 2.882 (5) 164
O2A-H2A...O1vi 0.84 1.84 2.664 (5) 167
O6B-H6B...O1Biv 0.84 2.05 2.801 (5) 149
O4B-H4B...O4A 0.84 2.10 2.835 (6) 147
O2B-H2B...O5Bvii 0.84 1.85 2.663 (6) 163
O3B-H3B...O1W 0.84 1.88 2.703 (6) 166
O3A-H3A...O4iv 0.84 1.89 2.705 (5) 163
O1W-H1W1...O5Aviii 0.85 (2) 1.95 (2) 2.794 (7) 173 (8)
O1W-H1W2...O2Bix 0.86 (2) 2.16 (5) 2.967 (6) 157 (11)
Symmetry codes: (i) [-x, y-{\script{3\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z-1]; (iii) [-x-1, y+{\script{1\over 2}}, -z-1]; (iv) [-x, y+{\script{1\over 2}}, -z-1]; (v) [-x+1, y-{\script{1\over 2}}, -z]; (vi) [-x, y+{\script{3\over 2}}, -z]; (vii) x, y-1, z; (viii) [-x, y-{\script{1\over 2}}, -z]; (ix) [-x, y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Hooft 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SCHAKAL99 (Keller 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]); software used to prepare material for publication: PLATON (Spek 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2099 ).


Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft and by University start-up funding (2004-2005).

References

Griesbeck, A. G., Miara, C. & Neudörfl, J. (2007). Arkivoc, 8, 216-223.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.
Numata, A., Iritani, M., Yamada, T., Minoura, K., Matsumura, E., Yamori, T. & Tsuruo, T. (1997). Tetrahedron Lett. 38, 8215-8218.  [CrossRef] [ChemPort] [ISI]
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Usami, Y., Horibe, Y., Takaoka, I., Ichikawa, H. & Arimoto, M. (2006). Synlett, 10, 1598-1600.  [CrossRef]
Usami, Y. & Mizuki, K. (2011). J. Nat. Prod. 74, 877-881.  [ISI] [CrossRef] [ChemPort] [PubMed]
Usami, Y., Mizuki, K., Ichikawa, H. & Arimoto, M. (2008). Tetrahedron Asymmetry, 19, 1461-1464.  [ISI] [CrossRef] [ChemPort]
Usami, Y., Ohsugi, M., Mizuki, K., Ichikawa, H. & Arimoto, M. (2009). Org. Lett. 11, 2699-2701.  [ISI] [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2012). E68, o3149-o3150   [ doi:10.1107/S1600536812041256 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.