organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (2E)-2-cyano-3-(di­methyl­amino)­prop-2-enoate

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 5 October 2012; accepted 9 October 2012; online 13 October 2012)

In the title compound, C7H10N2O2, the dimethyl­amino group is twisted slightly relative to the acrylate fragment, forming a dihedral angle of 11.6 (1)°. In the crystal, molecules are linked via pairs of bifurcated C—H/H⋯O hydrogen bonds, forming inversion dimers, which are further connected by C—H⋯N hydrogen bonds into chains along the a-axis direction.

Related literature

For applications of enamines, see: Huang et al. (2007[Huang, J., Liang, Y., Pan, W., Yang, Y. & Dong, D. (2007). Org. Lett. 9, 5345-5348.]); Michael et al. (1999[Michael, J. P., De Konig, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979-988.]). For a related structure, see: Gupta et al. (2007[Gupta, V. P., Sharma, A., Dinesh & Rajnikant (2007). Spectrochim. Acta Part A, 68, 237-244.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N2O2

  • Mr = 154.17

  • Triclinic, [P \overline 1]

  • a = 7.1102 (5) Å

  • b = 7.8170 (5) Å

  • c = 8.2454 (6) Å

  • α = 97.270 (6)°

  • β = 93.431 (6)°

  • γ = 115.680 (7)°

  • V = 406.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.830, Tmax = 1.000

  • 6682 measured reflections

  • 1593 independent reflections

  • 1126 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.03

  • 1593 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.56 3.370 (2) 146
C4—H4A⋯O1i 0.96 2.58 3.415 (3) 145
C7—H7C⋯N2ii 0.96 2.58 3.535 (3) 172
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Enamines are the multipurpose synthetic intermediates used for the synthesis of a variety of organic derivatives, bioactive natural products and their analogs (Huang et al., 2007; Michael et al., 1999).

In (I)(Fig.1), all bond lengths and angles are normal and correspond to those observed in the related structure (Gupta et al., 2007). The dihedral angle between dimethylamino and acrylate fragment is 11.6 (1)°. In the crystal, C3—H3···O1 and C4—H4A···O1 hydrogen bonds link molecules to form dimers. Dimers are further connected by C—H···N hydrogen bonds into chains along the a axis (Fig. 2, Table 1.).

Related literature top

For applications of enamines, see: Huang et al. (2007); Michael et al. (1999). For a related structure, see: Gupta et al. (2007).

Experimental top

In a 50 ml round bottom flask the mixture of 5 mmole of methyl cyanoacetate and 5 mmole of dimethylformamide dimethyl acetal was stirred at room temperature for 1–1.5 h. After completion of reaction, the reaction mixture was poured on ice cold water and the separated solid was precipated after 15 minutes and recrystallized from ethanol. Yield: 87%; m.p. 378–380 K. IR(KBr): 2205, 1695, 1621, 1433, 1373, 1287, 1216 1/cm

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular C—H···O and C—H···N hydrogen bonds.
Methyl (2E)-2-cyano-3-(dimethylamino)prop-2-enoate top
Crystal data top
C7H10N2O2Z = 2
Mr = 154.17F(000) = 164
Triclinic, P1Dx = 1.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1102 (5) ÅCell parameters from 2720 reflections
b = 7.8170 (5) Åθ = 3.5–29.0°
c = 8.2454 (6) ŵ = 0.09 mm1
α = 97.270 (6)°T = 293 K
β = 93.431 (6)°Block, white
γ = 115.680 (7)°0.3 × 0.2 × 0.2 mm
V = 406.31 (5) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1593 independent reflections
Radiation source: fine-focus sealed tube1126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 99
Tmin = 0.830, Tmax = 1.000l = 1010
6682 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.0587P]
where P = (Fo2 + 2Fc2)/3
1593 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C7H10N2O2γ = 115.680 (7)°
Mr = 154.17V = 406.31 (5) Å3
Triclinic, P1Z = 2
a = 7.1102 (5) ÅMo Kα radiation
b = 7.8170 (5) ŵ = 0.09 mm1
c = 8.2454 (6) ÅT = 293 K
α = 97.270 (6)°0.3 × 0.2 × 0.2 mm
β = 93.431 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1593 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1126 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.047
6682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
1593 reflectionsΔρmin = 0.13 e Å3
103 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0160 (2)0.6248 (2)0.82511 (17)0.0648 (5)
O20.20619 (19)0.77535 (19)0.63425 (16)0.0535 (4)
C10.1860 (3)0.7109 (2)0.7792 (2)0.0438 (4)
C20.3885 (3)0.7570 (2)0.8695 (2)0.0405 (4)
N10.5414 (2)0.7293 (2)1.13299 (19)0.0475 (4)
N20.7150 (3)0.9493 (3)0.7343 (2)0.0733 (6)
C30.3876 (3)0.7106 (2)1.0252 (2)0.0423 (4)
H30.25520.65671.05990.051*
C40.5009 (3)0.6883 (3)1.2987 (3)0.0666 (6)
H4A0.35250.63651.30510.100*
H4B0.57370.80511.37730.100*
H4C0.54980.59641.32280.100*
C50.7594 (3)0.7984 (3)1.1018 (3)0.0616 (6)
H5A0.76420.74140.99290.092*
H5B0.83460.76331.18130.092*
H5C0.82300.93601.11070.092*
C60.5718 (3)0.8620 (3)0.7958 (2)0.0478 (5)
C70.0158 (3)0.7445 (3)0.5374 (3)0.0611 (6)
H7A0.07650.60900.51180.092*
H7B0.04910.79500.43710.092*
H7C0.05240.80900.59880.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0394 (8)0.0845 (10)0.0603 (9)0.0136 (7)0.0073 (7)0.0287 (8)
O20.0476 (8)0.0646 (9)0.0472 (8)0.0215 (6)0.0059 (6)0.0186 (6)
C10.0443 (11)0.0417 (9)0.0417 (10)0.0157 (8)0.0064 (8)0.0071 (7)
C20.0356 (9)0.0396 (9)0.0435 (10)0.0140 (7)0.0079 (8)0.0061 (7)
N10.0395 (8)0.0516 (9)0.0457 (9)0.0151 (7)0.0027 (7)0.0095 (7)
N20.0502 (11)0.0953 (15)0.0766 (13)0.0263 (10)0.0241 (10)0.0380 (11)
C30.0369 (10)0.0385 (9)0.0467 (10)0.0122 (8)0.0069 (8)0.0073 (7)
C40.0583 (13)0.0804 (15)0.0516 (12)0.0205 (11)0.0027 (10)0.0200 (11)
C50.0422 (11)0.0738 (14)0.0650 (14)0.0223 (10)0.0028 (10)0.0140 (11)
C60.0430 (10)0.0534 (11)0.0475 (11)0.0210 (9)0.0086 (9)0.0114 (9)
C70.0567 (13)0.0726 (14)0.0569 (13)0.0298 (11)0.0024 (10)0.0200 (11)
Geometric parameters (Å, º) top
O1—C11.213 (2)C3—H30.9300
O2—C11.346 (2)C4—H4A0.9600
O2—C71.438 (2)C4—H4B0.9600
C1—C21.454 (2)C4—H4C0.9600
C2—C31.377 (2)C5—H5A0.9600
C2—C61.427 (2)C5—H5B0.9600
N1—C31.311 (2)C5—H5C0.9600
N1—C51.455 (2)C7—H7A0.9600
N1—C41.460 (2)C7—H7B0.9600
N2—C61.143 (2)C7—H7C0.9600
C1—O2—C7116.82 (15)N1—C4—H4C109.5
O1—C1—O2122.40 (17)H4A—C4—H4C109.5
O1—C1—C2125.53 (17)H4B—C4—H4C109.5
O2—C1—C2112.07 (15)N1—C5—H5A109.5
C3—C2—C6125.51 (17)N1—C5—H5B109.5
C3—C2—C1117.00 (15)H5A—C5—H5B109.5
C6—C2—C1117.21 (16)N1—C5—H5C109.5
C3—N1—C5124.10 (16)H5A—C5—H5C109.5
C3—N1—C4120.07 (15)H5B—C5—H5C109.5
C5—N1—C4115.77 (16)N2—C6—C2177.6 (2)
N1—C3—C2131.07 (16)O2—C7—H7A109.5
N1—C3—H3114.5O2—C7—H7B109.5
C2—C3—H3114.5H7A—C7—H7B109.5
N1—C4—H4A109.5O2—C7—H7C109.5
N1—C4—H4B109.5H7A—C7—H7C109.5
H4A—C4—H4B109.5H7B—C7—H7C109.5
C7—O2—C1—O12.5 (3)O2—C1—C2—C60.9 (2)
C7—O2—C1—C2177.56 (15)C5—N1—C3—C24.1 (3)
O1—C1—C2—C34.8 (3)C4—N1—C3—C2173.00 (19)
O2—C1—C2—C3175.27 (15)C6—C2—C3—N18.1 (3)
O1—C1—C2—C6179.14 (17)C1—C2—C3—N1178.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.563.370 (2)146
C4—H4A···O1i0.962.583.415 (3)145
C7—H7C···N2ii0.962.583.535 (3)172
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H10N2O2
Mr154.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1102 (5), 7.8170 (5), 8.2454 (6)
α, β, γ (°)97.270 (6), 93.431 (6), 115.680 (7)
V3)406.31 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.830, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6682, 1593, 1126
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.03
No. of reflections1593
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.563.370 (2)146
C4—H4A···O1i0.962.583.415 (3)145
C7—H7C···N2ii0.962.583.535 (3)172
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationGupta, V. P., Sharma, A., Dinesh & Rajnikant (2007). Spectrochim. Acta Part A, 68, 237–244.
First citationHuang, J., Liang, Y., Pan, W., Yang, Y. & Dong, D. (2007). Org. Lett. 9, 5345–5348.  Web of Science CrossRef PubMed CAS
First citationMichael, J. P., De Konig, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979–988.  Web of Science CrossRef CAS
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds