inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­amminelithium triamminelithium tris­­ulfide, [Li(NH3)4][Li(NH3)3S3]

aInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de

(Received 4 October 2012; accepted 23 October 2012; online 27 October 2012)

The title compound, [Li(NH3)4]+[Li(NH3)3S3], an ammo­niate of the previously unknown lithium tris­ulfide, was obtained from the reaction of lithium and sulfur in liquid ammonia. The asymmetric unit consists of two crystallographically independent formula units. The [Li(NH3)4]+ cations are close to regular LiN4 tetra­hedra. The anions contain LiSN3 tetra­hedra; the S—S—S bond angles are 110.43 (5) and 109.53 (5)°. In the crystal, the components are linked by multiple N—H⋯S hydrogen bonds. A weak N—H⋯N hydrogen bond is also present.

Related literature

For structural details of [Li(NH3)4]Se3, see: Brandl (2009[Brandl, K. (2009). PhD thesis, Universität Regensburg, Germany.]). For N—H⋯S hydrogen bonds, see: Rossmeier (2002[Rossmeier, T. (2002). Diploma thesis, Universität Regensburg, Germany.], 2005[Rossmeier, T. (2005). PhD thesis, Universität Regensburg, Germany.]); Meier (2008[Meier, M. (2008). Diploma thesis, Universität Regensburg, Germany.]). For the synthesis of tris­ulfides of the heavier alkali metals (Na–Cs), see: Böttcher (1977[Böttcher, P. (1977). Z. Anorg. Allg. Chem. 432, 167-172.], 1980a[Böttcher, P. (1980a). Z. Anorg. Allg. Chem. 461, 13-21.],b[Böttcher, P. (1980b). Z. Anorg. Allg. Chem. 467, 149-157.]). For hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

Experimental

Crystal data
  • [Li(NH3)4][Li(NH3)3S3]

  • Mr = 229.30

  • Monoclinic, P 21 /c

  • a = 12.422 (3) Å

  • b = 9.3721 (19) Å

  • c = 22.269 (5) Å

  • β = 92.46 (3)°

  • V = 2590.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 123 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Stoe IPDS 1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie 2006)[Stoe & Cie (2006). X-AREA, X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.] Tmin = 0.947, Tmax = 0.981

  • 32304 measured reflections

  • 4788 independent reflections

  • 2989 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.079

  • S = 0.81

  • 4788 reflections

  • 383 parameters

  • All H-atom parameters refined

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Li1—N2 2.059 (7)
Li1—N3 2.061 (6)
Li1—N1 2.099 (7)
Li1—N4 2.104 (7)
Li2—N7 2.033 (7)
Li2—N5 2.066 (7)
Li2—N6 2.071 (7)
Li2—S1 2.547 (6)
Li3—N10 2.081 (6)
Li3—N11 2.082 (7)
Li3—N9 2.085 (7)
Li3—N8 2.105 (7)
Li4—N13 2.052 (7)
Li4—N14 2.058 (7)
Li4—N12 2.084 (7)
Li4—S4 2.503 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯S4 0.89 (5) 2.84 (5) 3.677 (4) 158 (4)
N5—H5B⋯S4i 0.93 (5) 2.70 (5) 3.613 (3) 167 (4)
N7—H7C⋯S2 0.89 (5) 2.86 (4) 3.542 (4) 135 (3)
N7—H7C⋯S3 0.89 (5) 2.80 (5) 3.656 (4) 162 (4)
N10—H10B⋯S6 0.89 (6) 2.84 (6) 3.718 (4) 169 (4)
N10—H10A⋯S6ii 0.93 (5) 2.65 (5) 3.545 (4) 163 (3)
N14—H14C⋯S5 0.93 (5) 2.90 (5) 3.552 (4) 128 (4)
N14—H14C⋯S6 0.93 (5) 2.86 (5) 3.781 (4) 170 (4)
N1—H1C⋯S3iii 0.88 (5) 2.98 (5) 3.782 (4) 154 (4)
N1—H1A⋯S5i 0.90 (5) 2.87 (5) 3.741 (4) 165 (4)
N1—H1B⋯S6iv 0.83 (5) 2.80 (5) 3.632 (4) 179 (4)
N2—H2B⋯S1v 0.82 (5) 2.71 (5) 3.521 (4) 168 (4)
N2—H2A⋯S5iv 0.83 (5) 2.76 (5) 3.566 (4) 166 (4)
N2—H2C⋯S6ii 0.91 (5) 2.66 (5) 3.569 (4) 171 (4)
N3—H3C⋯S1v 0.85 (6) 2.84 (6) 3.665 (4) 163 (4)
N3—H3B⋯S3vi 0.92 (5) 2.92 (5) 3.813 (4) 164 (4)
N4—H4A⋯S6ii 0.90 (6) 2.95 (6) 3.834 (4) 168 (4)
N5—H5B⋯S5i 0.93 (5) 2.91 (5) 3.587 (4) 130 (3)
N6—H6C⋯S5iv 0.81 (5) 2.91 (6) 3.663 (4) 156 (4)
N6—H6B⋯S6ii 0.90 (5) 2.78 (5) 3.664 (4) 169 (3)
N7—H7A⋯S4 0.83 (5) 2.89 (5) 3.691 (4) 161 (4)
N7—H7B⋯S6ii 0.84 (6) 2.85 (6) 3.600 (4) 150 (5)
N8—H8B⋯S1i 0.92 (5) 2.83 (5) 3.734 (4) 169 (3)
N8—H8C⋯S2vi 0.77 (5) 2.89 (5) 3.641 (4) 168 (5)
N8—H8A⋯S4i 0.83 (5) 2.68 (6) 3.507 (4) 177 (5)
N9—H9A⋯S1i 0.87 (5) 2.96 (5) 3.803 (4) 163 (4)
N9—H9C⋯S3ii 0.88 (5) 2.85 (5) 3.729 (4) 179 (4)
N9—H9B⋯S6 0.86 (5) 2.99 (5) 3.805 (4) 157 (4)
N11—H11B⋯S3vi 0.83 (5) 2.90 (5) 3.717 (4) 170 (4)
N12—H12A⋯S2 0.86 (5) 3.01 (5) 3.842 (4) 166 (4)
N12—H12C⋯S3vii 0.91 (5) 2.93 (5) 3.787 (4) 157 (3)
N13—H13B⋯S1viii 0.86 (5) 2.72 (5) 3.571 (4) 168 (4)
N13—H13A⋯S3ix 0.85 (5) 3.01 (5) 3.855 (4) 175 (4)
N13—H13C⋯N4i 0.86 (5) 2.62 (5) 3.412 (6) 154 (4)
N14—H14B⋯S3vii 0.85 (5) 2.83 (5) 3.603 (4) 153 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x+1, y, z; (vii) -x, -y+1, -z+1; (viii) -x, -y+2, -z+1; (ix) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA, X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In contrast to the trisulfides of the heavier alkali metals (Na–Cs) which were synthesized by Böttcher (1977, 1980a,b) under ammonothermalic conditions (130–400 °C, 500–3000 bar), [Li(NH3)4][Li(NH3)3S3] was formed in the reaction of lithium and sulfur in liquid ammonia. The crystal structure of [Li(NH3)4][Li(NH3)3S3] was determined in the course of investigations concerning the reactivity of sulfur containing components in solutions of alkali metals in liquid ammonia.

In the title compound, two crystallographically independent formula units represent the asymmetric unit (Fig. 1). The independent trisulfide anions S32– have an angled shape with angles of 110.43 (5)° and 109.53 (5)°. The average of the sulfur-sulfur distances is 2.083 Å and agrees with known S—S-distances of other trisulfides (Böttcher, 1977, 1980a,b). In contrast to the isolated Se32–-anion in [Li(NH3)4]Se3, the two crystallographically different S32–-anions build mono anionic [Li(NH3)3S3]--aggregates with triammine complexes. Therein, the lithium atoms are pseudo-tetrahedrally surrounded by three nitrogen and one sulfur atom. Mono cationic lithium tetrammine complexes compensate the remaining negative charges. In the [Li(NH3)4]+– and [Li(NH3)3S3]--units the Li—N-distances range from 2.033 (7) Å to 2.105 (7) Å, the two Li—S-distances from 2.503 (5) Å to 2.547 (6) Å. The title compound represents after Na2S3 × NH3 the second trisulfide compound that contains ammonia molecules of crystallization. Every ammonia molecule forms hydrogen bonds and acts as a donor molecule. The sulfur atoms and the nitrogen atom N(4) operate as hydrogen bond acceptors. The proton···sulfur distance corresponds to similar hydrogen bonds in compounds synthesized by Rossmeier (2002, 2005) or Meier (2008). Distances and angles are shown in Table 1. Figure 2 illustrates the unit cell of the title compound but hydrogen bonds are not depicted.

Related literature top

For structural details of [Li(NH3)4]Se3, see: Brandl (2009). For N—H···S hydrogen bonds, see: Rossmeier (2002, 2005); Meier (2008). For the synthesis of trisulfides of the heavier alkali metals (Na–Cs), see: Böttcher (1977, 1980a,b). For hysrogen bonding, see: Steiner (2002).

Experimental top

All preparations were carried out in an atmosphere of dried and purified argon using standard Schlenk techniques. Liquid ammonia was dried and stored over sodium. 100 mg (14.2 mmol) Li and 231 mg (7.2 mmol) S8 were placed in a baked out U-Schlenk tube inside a glove box. Approximately 25 ml ammonia were condensed into the tube at -78°C, yielding a blue solution of the alkali metal. After a storage at -38°C for three weeks the solution colour turned to yellow-orange and after four months orange crystals were formed. One was subjected to low temperature X-ray diffraction.

Refinement top

All hydrogen atoms were found by difference Fourier analysis and refined isotropically.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-AREA (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of [Li(NH3)4][Li(NH3)3S3]. Ellipsoids of all non-hydrogen atoms are given with a probability level of 50%.
[Figure 2] Fig. 2. Projection of the unit cell of [Li(NH3)4][Li(NH3)3S3]. No hydrogen bondings are illustrated. Lithium tetraammine complexes are shown in blue polyhedron design without hydrogen atoms. The probability level of the displacement ellipsoids is 50%.
Tetraamminelithium triamminelithium trisulfide top
Crystal data top
[Li(NH3)4][Li(NH3)3S3]F(000) = 992
Mr = 229.30Dx = 1.176 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 33516 reflections
a = 12.422 (3) Åθ = 2.4–25.5°
b = 9.3721 (19) ŵ = 0.54 mm1
c = 22.269 (5) ÅT = 123 K
β = 92.46 (3)°Block, orange
V = 2590.2 (9) Å30.1 × 0.1 × 0.1 mm
Z = 8
Data collection top
Stoe IPDS 1
diffractometer
4788 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
rotation scansθmax = 25.5°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie 2006)
h = 1515
Tmin = 0.947, Tmax = 0.981k = 1111
32304 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.079All H-atom parameters refined
S = 0.81 w = 1/[σ2(Fo2) + (0.0278P)2]
where P = (Fo2 + 2Fc2)/3
4788 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Li(NH3)4][Li(NH3)3S3]V = 2590.2 (9) Å3
Mr = 229.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.422 (3) ŵ = 0.54 mm1
b = 9.3721 (19) ÅT = 123 K
c = 22.269 (5) Å0.1 × 0.1 × 0.1 mm
β = 92.46 (3)°
Data collection top
Stoe IPDS 1
diffractometer
4788 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie 2006)
2989 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.981Rint = 0.097
32304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.079All H-atom parameters refined
S = 0.81Δρmax = 0.53 e Å3
4788 reflectionsΔρmin = 0.26 e Å3
383 parameters
Special details top

Experimental. Crystal mounting in perfluorether

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.7395 (4)0.7907 (6)0.7389 (3)0.0252 (13)
Li20.3406 (4)0.8493 (7)0.6182 (3)0.0266 (13)
Li30.7452 (4)0.7081 (6)0.4913 (3)0.0250 (13)
Li40.1536 (4)0.7795 (6)0.3651 (3)0.0249 (13)
S10.15394 (6)0.93809 (9)0.64317 (4)0.02269 (19)
S20.05542 (7)0.79073 (9)0.59691 (4)0.0255 (2)
S30.06305 (7)0.59281 (9)0.63965 (4)0.0269 (2)
S40.33097 (7)0.82682 (10)0.41901 (4)0.0268 (2)
S50.42615 (6)0.75535 (9)0.35064 (4)0.02202 (18)
S60.46313 (7)0.54071 (10)0.36418 (4)0.0240 (2)
N10.6879 (3)0.9930 (4)0.76601 (16)0.0265 (7)
N20.6495 (3)0.6230 (4)0.76905 (16)0.0244 (7)
N30.8984 (3)0.7513 (5)0.76394 (17)0.0288 (7)
N40.7316 (3)0.7768 (5)0.64448 (15)0.0358 (8)
N50.4113 (3)0.9960 (4)0.56295 (15)0.0246 (7)
N60.4488 (3)0.8081 (4)0.68949 (17)0.0294 (7)
N70.3186 (3)0.6668 (4)0.56994 (17)0.0266 (7)
N80.8168 (3)0.9077 (4)0.51002 (17)0.0246 (7)
N90.7427 (3)0.6940 (4)0.39786 (14)0.0257 (7)
N100.5838 (2)0.6757 (4)0.50895 (16)0.0275 (7)
N110.8388 (3)0.5406 (4)0.52589 (18)0.0326 (8)
N120.0296 (2)0.7627 (4)0.42483 (15)0.0270 (7)
N130.1046 (3)0.9471 (4)0.31136 (17)0.0266 (7)
N140.1714 (3)0.5983 (4)0.31432 (18)0.0292 (7)
H1A0.678 (3)1.056 (5)0.737 (2)0.038 (12)*
H1B0.640 (3)0.989 (4)0.7876 (19)0.025 (11)*
H1C0.733 (3)1.046 (5)0.7866 (19)0.032 (11)*
H2A0.603 (3)0.637 (4)0.7916 (19)0.026 (8)*
H2B0.695 (4)0.563 (5)0.786 (2)0.040 (12)*
H2C0.625 (3)0.573 (5)0.740 (2)0.035 (12)*
H3A0.925 (4)0.810 (6)0.780 (2)0.041 (15)*
H3B0.942 (3)0.732 (5)0.7338 (19)0.033 (11)*
H3C0.899 (4)0.674 (6)0.782 (2)0.046 (14)*
H4A0.693 (4)0.699 (6)0.637 (2)0.055 (15)*
H4B0.795 (4)0.769 (6)0.628 (2)0.058 (15)*
H4C0.706 (4)0.845 (5)0.625 (2)0.039 (9)*
H5A0.412 (3)0.967 (5)0.525 (2)0.034 (11)*
H5B0.481 (4)1.025 (4)0.5667 (18)0.033 (11)*
H5C0.380 (3)1.074 (5)0.5647 (19)0.033 (12)*
H6A0.497 (4)0.863 (5)0.6871 (19)0.035 (13)*
H6B0.476 (3)0.725 (5)0.6808 (17)0.021 (10)*
H6C0.420 (4)0.809 (5)0.722 (2)0.045 (14)*
H7A0.330 (3)0.680 (5)0.534 (2)0.034 (12)*
H7B0.362 (4)0.593 (6)0.575 (2)0.055 (15)*
H7C0.258 (4)0.640 (4)0.5784 (18)0.030 (11)*
H8A0.784 (4)0.967 (5)0.527 (2)0.039 (9)*
H8B0.830 (3)0.953 (4)0.477 (2)0.025 (10)*
H8C0.871 (4)0.895 (5)0.529 (2)0.035 (12)*
H9A0.770 (3)0.767 (5)0.3810 (19)0.035 (12)*
H9B0.677 (4)0.683 (5)0.3837 (19)0.039 (12)*
H9C0.785 (4)0.628 (5)0.389 (2)0.041 (13)*
H10A0.571 (3)0.603 (4)0.5340 (18)0.022 (10)*
H10B0.547 (4)0.647 (5)0.478 (2)0.048 (14)*
H10C0.552 (3)0.744 (5)0.526 (2)0.041 (13)*
H11A0.806 (3)0.481 (5)0.5431 (19)0.025 (12)*
H11B0.889 (4)0.563 (5)0.550 (2)0.039 (12)*
H11C0.870 (3)0.496 (5)0.497 (2)0.031 (12)*
H12A0.047 (3)0.767 (5)0.464 (2)0.041 (12)*
H12B0.018 (4)0.824 (6)0.421 (2)0.053 (15)*
H12C0.002 (3)0.678 (5)0.4214 (18)0.029 (11)*
H13A0.099 (3)0.931 (4)0.274 (2)0.026 (11)*
H13B0.053 (4)0.978 (5)0.326 (2)0.036 (13)*
H13C0.146 (3)1.020 (5)0.3085 (17)0.026 (8)*
H14A0.173 (4)0.610 (5)0.279 (3)0.047 (15)*
H14B0.136 (3)0.533 (5)0.3247 (19)0.030 (12)*
H14C0.238 (4)0.574 (5)0.321 (2)0.050 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.025 (3)0.027 (3)0.024 (3)0.003 (2)0.001 (2)0.001 (3)
Li20.028 (3)0.026 (3)0.026 (3)0.001 (2)0.001 (2)0.003 (3)
Li30.022 (3)0.029 (4)0.024 (3)0.001 (2)0.001 (2)0.003 (3)
Li40.023 (3)0.026 (3)0.026 (3)0.001 (2)0.000 (2)0.003 (3)
S10.0216 (4)0.0202 (4)0.0260 (5)0.0005 (3)0.0009 (3)0.0036 (4)
S20.0259 (4)0.0251 (5)0.0245 (4)0.0007 (3)0.0098 (3)0.0003 (4)
S30.0277 (5)0.0234 (5)0.0297 (5)0.0051 (3)0.0010 (4)0.0013 (4)
S40.0214 (4)0.0338 (5)0.0250 (5)0.0051 (4)0.0018 (3)0.0094 (4)
S50.0242 (4)0.0222 (4)0.0198 (4)0.0007 (3)0.0031 (3)0.0017 (4)
S60.0265 (4)0.0215 (5)0.0238 (4)0.0027 (3)0.0008 (3)0.0024 (4)
N10.0265 (17)0.0296 (18)0.0234 (17)0.0007 (14)0.0031 (15)0.0043 (15)
N20.0226 (16)0.0283 (18)0.0221 (17)0.0011 (13)0.0011 (13)0.0007 (14)
N30.0259 (16)0.0283 (19)0.0321 (19)0.0006 (16)0.0011 (14)0.0035 (18)
N40.044 (2)0.041 (2)0.0219 (17)0.0086 (18)0.0003 (15)0.0037 (16)
N50.0241 (17)0.0241 (18)0.0254 (18)0.0003 (13)0.0021 (13)0.0003 (14)
N60.0314 (18)0.0277 (19)0.0285 (19)0.0048 (17)0.0032 (15)0.0018 (16)
N70.0223 (16)0.0275 (19)0.030 (2)0.0030 (14)0.0037 (14)0.0014 (15)
N80.0241 (17)0.0252 (17)0.0242 (18)0.0029 (13)0.0022 (14)0.0017 (15)
N90.0257 (17)0.0278 (18)0.0235 (16)0.0027 (15)0.0002 (13)0.0016 (14)
N100.0271 (16)0.0304 (19)0.0249 (18)0.0013 (15)0.0001 (14)0.0032 (16)
N110.0355 (18)0.0266 (19)0.034 (2)0.0016 (16)0.0142 (17)0.0017 (17)
N120.0250 (15)0.0290 (19)0.0271 (18)0.0021 (15)0.0022 (13)0.0000 (15)
N130.0225 (16)0.0289 (19)0.0287 (19)0.0054 (14)0.0040 (14)0.0032 (15)
N140.0244 (18)0.034 (2)0.029 (2)0.0008 (16)0.0024 (14)0.0054 (16)
Geometric parameters (Å, º) top
Li1—N22.059 (7)N4—H4C0.83 (5)
Li1—N32.061 (6)N5—H5A0.88 (5)
Li1—N12.099 (7)N5—H5B0.90 (4)
Li1—N42.104 (7)N5—H5C0.83 (5)
Li2—N72.033 (7)N6—H6A0.80 (5)
Li2—N52.066 (7)N6—H6B0.87 (4)
Li2—N62.071 (7)N6—H6C0.82 (5)
Li2—S12.547 (6)N7—H7A0.82 (5)
Li3—N102.081 (6)N7—H7B0.88 (6)
Li3—N112.082 (7)N7—H7C0.83 (4)
Li3—N92.085 (7)N8—H8A0.80 (5)
Li3—N82.105 (7)N8—H8B0.86 (4)
Li4—N132.052 (7)N8—H8C0.79 (5)
Li4—N142.058 (7)N9—H9A0.86 (5)
Li4—N122.084 (7)N9—H9B0.87 (5)
Li4—S42.503 (5)N9—H9C0.84 (5)
S1—S22.0876 (13)N10—H10A0.90 (4)
S2—S32.0852 (13)N10—H10B0.85 (5)
S4—S52.0782 (13)N10—H10C0.85 (5)
S5—S62.0825 (13)N11—H11A0.80 (4)
N1—H1A0.87 (5)N11—H11B0.83 (5)
N1—H1B0.79 (4)N11—H11C0.87 (5)
N1—H1C0.86 (5)N12—H12A0.89 (5)
N2—H2A0.79 (4)N12—H12B0.83 (5)
N2—H2B0.87 (5)N12—H12C0.89 (5)
N2—H2C0.85 (5)N13—H13A0.84 (4)
N3—H3A0.73 (5)N13—H13B0.78 (5)
N3—H3B0.90 (4)N13—H13C0.86 (4)
N3—H3C0.83 (5)N14—H14A0.80 (5)
N4—H4A0.88 (6)N14—H14B0.79 (5)
N4—H4B0.89 (5)N14—H14C0.87 (5)
N2—Li1—N3107.6 (3)H5A—N5—H5C110 (4)
N2—Li1—N1114.8 (3)H5B—N5—H5C100 (4)
N3—Li1—N1112.6 (3)Li2—N6—H6A107 (3)
N2—Li1—N4106.0 (3)Li2—N6—H6B104 (2)
N3—Li1—N4105.3 (3)H6A—N6—H6B105 (4)
N1—Li1—N4110.0 (3)Li2—N6—H6C112 (3)
N7—Li2—N5107.2 (3)H6A—N6—H6C115 (5)
N7—Li2—N6108.5 (3)H6B—N6—H6C113 (4)
N5—Li2—N6107.6 (3)Li2—N7—H7A111 (3)
N7—Li2—S1106.7 (3)Li2—N7—H7B122 (3)
N5—Li2—S1109.1 (3)H7A—N7—H7B96 (4)
N6—Li2—S1117.4 (3)Li2—N7—H7C104 (3)
N10—Li3—N11110.3 (3)H7A—N7—H7C118 (4)
N10—Li3—N9101.9 (3)H7B—N7—H7C107 (4)
N11—Li3—N9107.8 (3)Li3—N8—H8A120 (3)
N10—Li3—N8119.7 (3)Li3—N8—H8B111 (3)
N11—Li3—N8111.9 (3)H8A—N8—H8B100 (4)
N9—Li3—N8104.0 (3)Li3—N8—H8C108 (3)
N13—Li4—N14110.3 (3)H8A—N8—H8C107 (4)
N13—Li4—N12102.8 (3)H8B—N8—H8C109 (4)
N14—Li4—N12112.8 (3)Li3—N9—H9A113 (3)
N13—Li4—S4112.2 (3)Li3—N9—H9B110 (3)
N14—Li4—S4107.3 (2)H9A—N9—H9B109 (4)
N12—Li4—S4111.5 (3)Li3—N9—H9C108 (3)
S2—S1—Li2101.31 (14)H9A—N9—H9C103 (4)
S3—S2—S1110.43 (5)H9B—N9—H9C114 (4)
S5—S4—Li496.22 (14)Li3—N10—H10A116 (2)
S4—S5—S6109.53 (5)Li3—N10—H10B112 (3)
Li1—N1—H1A116 (3)H10A—N10—H10B99 (4)
Li1—N1—H1B113 (3)Li3—N10—H10C116 (3)
H1A—N1—H1B113 (4)H10A—N10—H10C101 (4)
Li1—N1—H1C118 (3)H10B—N10—H10C111 (4)
H1A—N1—H1C94 (4)Li3—N11—H11A115 (3)
H1B—N1—H1C101 (4)Li3—N11—H11B116 (3)
Li1—N2—H2A120 (3)H11A—N11—H11B105 (4)
Li1—N2—H2B106 (3)Li3—N11—H11C110 (3)
H2A—N2—H2B108 (4)H11A—N11—H11C106 (4)
Li1—N2—H2C111 (3)H11B—N11—H11C105 (4)
H2A—N2—H2C109 (4)Li4—N12—H12A118 (3)
H2B—N2—H2C101 (4)Li4—N12—H12B116 (3)
Li1—N3—H3A114 (4)H12A—N12—H12B101 (4)
Li1—N3—H3B116 (2)Li4—N12—H12C111 (3)
H3A—N3—H3B104 (4)H12A—N12—H12C102 (4)
Li1—N3—H3C106 (3)H12B—N12—H12C107 (4)
H3A—N3—H3C114 (5)Li4—N13—H13A117 (3)
H3B—N3—H3C102 (4)Li4—N13—H13B106 (3)
Li1—N4—H4A103 (3)H13A—N13—H13B115 (4)
Li1—N4—H4B115 (3)Li4—N13—H13C119 (3)
H4A—N4—H4B110 (5)H13A—N13—H13C95 (4)
Li1—N4—H4C118 (3)H13B—N13—H13C104 (4)
H4A—N4—H4C110 (4)Li4—N14—H14A116 (4)
H4B—N4—H4C100 (4)Li4—N14—H14B114 (3)
Li2—N5—H5A113 (3)H14A—N14—H14B116 (5)
Li2—N5—H5B125 (3)Li4—N14—H14C104 (3)
H5A—N5—H5B98 (4)H14A—N14—H14C99 (4)
Li2—N5—H5C110 (3)H14B—N14—H14C106 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···S40.89 (5)2.84 (5)3.677 (4)158 (4)
N5—H5B···S4i0.93 (5)2.70 (5)3.613 (3)167 (4)
N7—H7C···S20.89 (5)2.86 (4)3.542 (4)135 (3)
N7—H7C···S30.89 (5)2.80 (5)3.656 (4)162 (4)
N10—H10B···S60.89 (6)2.84 (6)3.718 (4)169 (4)
N10—H10A···S6ii0.93 (5)2.65 (5)3.545 (4)163 (3)
N14—H14C···S50.93 (5)2.90 (5)3.552 (4)128 (4)
N14—H14C···S60.93 (5)2.86 (5)3.781 (4)170 (4)
N1—H1C···S3iii0.88 (5)2.98 (5)3.782 (4)154 (4)
N1—H1A···S5i0.90 (5)2.87 (5)3.741 (4)165 (4)
N1—H1B···S6iv0.83 (5)2.80 (5)3.632 (4)179 (4)
N2—H2B···S1v0.82 (5)2.71 (5)3.521 (4)168 (4)
N2—H2A···S5iv0.83 (5)2.76 (5)3.566 (4)166 (4)
N2—H2C···S6ii0.91 (5)2.66 (5)3.569 (4)171 (4)
N3—H3C···S1v0.85 (6)2.84 (6)3.665 (4)163 (4)
N3—H3B···S3vi0.92 (5)2.92 (5)3.813 (4)164 (4)
N4—H4A···S6ii0.90 (6)2.95 (6)3.834 (4)168 (4)
N5—H5B···S5i0.93 (5)2.91 (5)3.587 (4)130 (3)
N6—H6C···S5iv0.81 (5)2.91 (6)3.663 (4)156 (4)
N6—H6B···S6ii0.90 (5)2.78 (5)3.664 (4)169 (3)
N7—H7A···S40.83 (5)2.89 (5)3.691 (4)161 (4)
N7—H7B···S6ii0.84 (6)2.85 (6)3.600 (4)150 (5)
N8—H8B···S1i0.92 (5)2.83 (5)3.734 (4)169 (3)
N8—H8C···S2vi0.77 (5)2.89 (5)3.641 (4)168 (5)
N8—H8A···S4i0.83 (5)2.68 (6)3.507 (4)177 (5)
N9—H9A···S1i0.87 (5)2.96 (5)3.803 (4)163 (4)
N9—H9C···S3ii0.88 (5)2.85 (5)3.729 (4)179 (4)
N9—H9B···S60.86 (5)2.99 (5)3.805 (4)157 (4)
N11—H11B···S3vi0.83 (5)2.90 (5)3.717 (4)170 (4)
N12—H12A···S20.86 (5)3.01 (5)3.842 (4)166 (4)
N12—H12C···S3vii0.91 (5)2.93 (5)3.787 (4)157 (3)
N13—H13B···S1viii0.86 (5)2.72 (5)3.571 (4)168 (4)
N13—H13A···S3ix0.85 (5)3.01 (5)3.855 (4)175 (4)
N13—H13C···N4i0.86 (5)2.62 (5)3.412 (6)154 (4)
N14—H14B···S3vii0.85 (5)2.83 (5)3.603 (4)153 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z+1/2; (v) x+1, y1/2, z+3/2; (vi) x+1, y, z; (vii) x, y+1, z+1; (viii) x, y+2, z+1; (ix) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Li(NH3)4][Li(NH3)3S3]
Mr229.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)12.422 (3), 9.3721 (19), 22.269 (5)
β (°) 92.46 (3)
V3)2590.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerStoe IPDS 1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie 2006)
Tmin, Tmax0.947, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
32304, 4788, 2989
Rint0.097
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.079, 0.81
No. of reflections4788
No. of parameters383
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.53, 0.26

Computer programs: X-AREA (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Li1—N22.059 (7)Li3—N102.081 (6)
Li1—N32.061 (6)Li3—N112.082 (7)
Li1—N12.099 (7)Li3—N92.085 (7)
Li1—N42.104 (7)Li3—N82.105 (7)
Li2—N72.033 (7)Li4—N132.052 (7)
Li2—N52.066 (7)Li4—N142.058 (7)
Li2—N62.071 (7)Li4—N122.084 (7)
Li2—S12.547 (6)Li4—S42.503 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···S40.89 (5)2.84 (5)3.677 (4)158 (4)
N5—H5B···S4i0.93 (5)2.70 (5)3.613 (3)167 (4)
N7—H7C···S20.89 (5)2.86 (4)3.542 (4)135 (3)
N7—H7C···S30.89 (5)2.80 (5)3.656 (4)162 (4)
N10—H10B···S60.89 (6)2.84 (6)3.718 (4)169 (4)
N10—H10A···S6ii0.93 (5)2.65 (5)3.545 (4)163 (3)
N14—H14C···S50.93 (5)2.90 (5)3.552 (4)128 (4)
N14—H14C···S60.93 (5)2.86 (5)3.781 (4)170 (4)
N1—H1C···S3iii0.88 (5)2.98 (5)3.782 (4)154 (4)
N1—H1A···S5i0.90 (5)2.87 (5)3.741 (4)165 (4)
N1—H1B···S6iv0.83 (5)2.80 (5)3.632 (4)179 (4)
N2—H2B···S1v0.82 (5)2.71 (5)3.521 (4)168 (4)
N2—H2A···S5iv0.83 (5)2.76 (5)3.566 (4)166 (4)
N2—H2C···S6ii0.91 (5)2.66 (5)3.569 (4)171 (4)
N3—H3C···S1v0.85 (6)2.84 (6)3.665 (4)163 (4)
N3—H3B···S3vi0.92 (5)2.92 (5)3.813 (4)164 (4)
N4—H4A···S6ii0.90 (6)2.95 (6)3.834 (4)168 (4)
N5—H5B···S5i0.93 (5)2.91 (5)3.587 (4)130 (3)
N6—H6C···S5iv0.81 (5)2.91 (6)3.663 (4)156 (4)
N6—H6B···S6ii0.90 (5)2.78 (5)3.664 (4)169 (3)
N7—H7A···S40.83 (5)2.89 (5)3.691 (4)161 (4)
N7—H7B···S6ii0.84 (6)2.85 (6)3.600 (4)150 (5)
N8—H8B···S1i0.92 (5)2.83 (5)3.734 (4)169 (3)
N8—H8C···S2vi0.77 (5)2.89 (5)3.641 (4)168 (5)
N8—H8A···S4i0.83 (5)2.68 (6)3.507 (4)177 (5)
N9—H9A···S1i0.87 (5)2.96 (5)3.803 (4)163 (4)
N9—H9C···S3ii0.88 (5)2.85 (5)3.729 (4)179 (4)
N9—H9B···S60.86 (5)2.99 (5)3.805 (4)157 (4)
N11—H11B···S3vi0.83 (5)2.90 (5)3.717 (4)170 (4)
N12—H12A···S20.86 (5)3.01 (5)3.842 (4)166 (4)
N12—H12C···S3vii0.91 (5)2.93 (5)3.787 (4)157 (3)
N13—H13B···S1viii0.86 (5)2.72 (5)3.571 (4)168 (4)
N13—H13A···S3ix0.85 (5)3.01 (5)3.855 (4)175 (4)
N13—H13C···N4i0.86 (5)2.62 (5)3.412 (6)154 (4)
N14—H14B···S3vii0.85 (5)2.83 (5)3.603 (4)153 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z+1/2; (v) x+1, y1/2, z+3/2; (vi) x+1, y, z; (vii) x, y+1, z+1; (viii) x, y+2, z+1; (ix) x, y+3/2, z1/2.
 

References

First citationBöttcher, P. (1977). Z. Anorg. Allg. Chem. 432, 167–172.
First citationBöttcher, P. (1980a). Z. Anorg. Allg. Chem. 461, 13–21.
First citationBöttcher, P. (1980b). Z. Anorg. Allg. Chem. 467, 149–157.
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBrandl, K. (2009). PhD thesis, Universität Regensburg, Germany.
First citationMeier, M. (2008). Diploma thesis, Universität Regensburg, Germany.
First citationRossmeier, T. (2002). Diploma thesis, Universität Regensburg, Germany.
First citationRossmeier, T. (2005). PhD thesis, Universität Regensburg, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS
First citationStoe & Cie (2006). X-AREA, X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds