organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1H-1,2,3-Benzotriazol-1-yl)-2-(4-meth­­oxy­phen­yl)ethanone

aChemistry Department, Faculty of Science, King Abdulaziz University PO Box 80203 , Jeddah 21589, Saudi Arabia, bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University PO Box 80203, Jeddah 21589, Saudi Arabia, cDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt, and dDepartment of Chemistry, Government College University, Faisalabad 38040, Pakistan
*Correspondence e-mail: aasiri2@kau.edu.sa, hafizshafique@hotmail.com

(Received 14 October 2012; accepted 22 October 2012; online 27 October 2012)

In the title compound, C15H13N3O2, the dihedral angle between the benzotriazole ring system (r.m.s. deviation = 0.0124 Å) and the benzene ring is 76.21 (3)°. The meth­oxy C atom deviates from its benzene ring plane by 0.063 (2)Å. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(12) loops.

Related literature

For chemical background, see: Katritzky et al. (1996a[Katritzky, A. R., Soleiman, M. & Yang, B. (1996a). Heteroat. Chem. 7, 365-367.],b[Katritzky, A. R., Yang, B. & Qian, Y. (1996b). Synlett, pp. 701-702.], 2005[Katritzky, A. R., Suzuki, K. & Wang, Z. (2005). Synlett, pp. 1656-1665.], 2010[Katritzky, A. R., Abo-Dya, N. E., Tala, S. R., Ghazvini-Zadeh, E. H., Bajaj, K. & El-Feky, S. A. (2010). Synlett, pp. 1337-1340.]). For a related structure, see: Selvarathy Grace et al. (2012[Selvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.]). For related literature, see: Zou et al. (2006[Zou, X., Wang, X., Cheng, C., Kong, L. & Mao, H. (2006). Tetrahedron Lett. 47, 3767-3771.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O2

  • Mr = 267.28

  • Monoclinic, P 21 /c

  • a = 5.4209 (1) Å

  • b = 24.4894 (5) Å

  • c = 10.0555 (2) Å

  • β = 98.552 (2)°

  • V = 1320.07 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 296 K

  • 0.34 × 0.17 × 0.16 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.784, Tmax = 0.889

  • 6122 measured reflections

  • 2707 independent reflections

  • 2340 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.08

  • 2707 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.40 3.1912 (16) 143
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Comment top

N-Acylbenzotriazoles are mild, regioselective and regiospecific reagents for N-, O-, C-, and S-acylation (Katritzky et al., 2010), & (Katritzky et al., 1996a). The title compound was previously converted into of a 1,3-diarylacetone (Katritzky et al., 2005) and an aryl benzyl sulfoxide (Katritzky et al., 1996b).

The title coompound is related in structure with 1-benzyl-1H-benzotriazole (Selvarathy Grace et al., 2012). The benzotriazole ring is almost planer with r.m.s. deviation of fitted non-hydrogen atoms (C1—C6/N1/N2/N3) is 0.0124 Å. The oxygen atom of carbonyl group is displaced at 0.0724 (2) Å with respect to benzotriazole. The methoxy benzene ring (C9—C14) is orientedted at dihedral angle of 76.21 (3)° with respect to benzotriazole rings. The C—H···O type weak hydrogen bonding interaction results in dimers about inversion center and generate twelve membered ring motif R22(12) (Table. 1, Fig. 2).

Related literature top

For chemical background, see: Katritzky et al. (1996a,b, 2005, 2010). For a related structure, see: Selvarathy Grace et al. (2012) For related literature, see: Zou et al. (2006).

Experimental top

A solution of thionyl chloride (0.4 ml, 5.5 mmol) and benzotriazole (1.79 g., 15 mmol) in methylene chloride (30 ml) was stirred at 293 K for 30 minutes. 2-(4-methoxypheny)acetic acid (0.83 g., 5 mmol) was then added and the heterogeneous mixture was stirred for 2 hr. The solid was filtered and methylene chloride (50mL) was added to the filtrate. The organic layer was extracted with saturated Na2CO3 (3 × 15 ml), brine (2 × 5 ml) and dried over anhyd. Na2SO4. Evaporation of methylene chloride solution afforded colourless prisms (1.21 g., 90% yield).

Refinement top

All the C—H and H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene & C—H = 0.96 Å for methyl groups. H-atoms were refined as riding with Uiso(H) = kUeq(C, N), where k = 1.2 for aromatic & methylene and k = 1.5 for methyl H-atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing diagram showing intermolecular hydrogen bonds, drawn using dashed lines. Hydrogen atoms not involved in bonding have been omitted for clarity.
1-(1H-1,2,3-Benzotriazol-1-yl)-2-(4-methoxyphenyl)ethanone top
Crystal data top
C15H13N3O2F(000) = 560
Mr = 267.28Dx = 1.345 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3661 reflections
a = 5.4209 (1) Åθ = 4.4–76.0°
b = 24.4894 (5) ŵ = 0.75 mm1
c = 10.0555 (2) ÅT = 296 K
β = 98.552 (2)°Prismatic, colorless
V = 1320.07 (4) Å30.34 × 0.17 × 0.16 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
2707 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2340 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
ω scansθmax = 76.2°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 64
Tmin = 0.784, Tmax = 0.889k = 2930
6122 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1534P]
where P = (Fo2 + 2Fc2)/3
2707 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H13N3O2V = 1320.07 (4) Å3
Mr = 267.28Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.4209 (1) ŵ = 0.75 mm1
b = 24.4894 (5) ÅT = 296 K
c = 10.0555 (2) Å0.34 × 0.17 × 0.16 mm
β = 98.552 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
2707 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2340 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.889Rint = 0.019
6122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
2707 reflectionsΔρmin = 0.16 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2197 (2)0.47488 (5)0.37631 (10)0.0750 (3)
O20.5718 (2)0.24790 (4)0.49538 (12)0.0737 (3)
N10.17264 (19)0.52715 (4)0.19212 (9)0.0463 (2)
N20.2345 (2)0.54066 (5)0.06808 (11)0.0581 (3)
N30.1096 (2)0.58305 (5)0.02364 (12)0.0640 (3)
C10.0418 (2)0.59893 (5)0.11725 (13)0.0517 (3)
C20.2135 (3)0.64152 (6)0.11304 (15)0.0647 (4)
H20.23960.66570.04100.078*
C30.3418 (3)0.64602 (7)0.21992 (16)0.0680 (4)
H30.45720.67410.22070.082*
C40.3036 (3)0.60952 (6)0.32785 (15)0.0639 (4)
H40.39550.61390.39820.077*
C50.1351 (3)0.56739 (6)0.33368 (13)0.0538 (3)
H50.11040.54310.40560.065*
C60.0036 (2)0.56326 (5)0.22524 (11)0.0445 (3)
C70.2792 (2)0.48237 (5)0.26753 (12)0.0482 (3)
C80.4576 (2)0.44711 (5)0.20553 (13)0.0522 (3)
H8A0.61540.46610.20810.063*
H8B0.39100.44010.11220.063*
C90.5001 (2)0.39358 (5)0.28009 (12)0.0463 (3)
C100.7140 (2)0.38340 (6)0.36909 (14)0.0553 (3)
H100.83980.40960.38020.066*
C110.7477 (2)0.33526 (6)0.44275 (14)0.0559 (3)
H110.89410.32940.50200.067*
C120.5628 (2)0.29645 (5)0.42717 (13)0.0501 (3)
C130.3460 (2)0.30573 (6)0.33780 (14)0.0548 (3)
H130.22070.27950.32650.066*
C140.3161 (2)0.35371 (5)0.26571 (13)0.0515 (3)
H140.16980.35950.20630.062*
C150.7849 (3)0.23650 (8)0.59061 (19)0.0839 (5)
H15A0.93080.23700.54690.126*
H15B0.76760.20110.62930.126*
H15C0.80100.26370.66020.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1114 (9)0.0677 (7)0.0547 (6)0.0257 (6)0.0415 (6)0.0192 (5)
O20.0810 (7)0.0529 (6)0.0814 (7)0.0002 (5)0.0071 (6)0.0172 (5)
N10.0552 (5)0.0463 (5)0.0402 (5)0.0011 (4)0.0166 (4)0.0041 (4)
N20.0705 (7)0.0606 (7)0.0485 (6)0.0056 (5)0.0264 (5)0.0127 (5)
N30.0781 (8)0.0648 (7)0.0534 (6)0.0118 (6)0.0244 (6)0.0174 (5)
C10.0591 (7)0.0498 (7)0.0473 (6)0.0008 (5)0.0118 (5)0.0039 (5)
C20.0755 (9)0.0577 (8)0.0610 (8)0.0103 (7)0.0102 (7)0.0080 (7)
C30.0720 (9)0.0591 (9)0.0735 (10)0.0127 (7)0.0128 (7)0.0067 (7)
C40.0719 (9)0.0647 (9)0.0591 (8)0.0034 (7)0.0230 (7)0.0109 (7)
C50.0671 (8)0.0536 (7)0.0432 (6)0.0022 (6)0.0168 (6)0.0032 (5)
C60.0509 (6)0.0425 (6)0.0409 (6)0.0059 (5)0.0092 (5)0.0029 (5)
C70.0583 (7)0.0450 (6)0.0438 (6)0.0031 (5)0.0160 (5)0.0044 (5)
C80.0561 (7)0.0517 (7)0.0525 (7)0.0008 (5)0.0203 (5)0.0058 (5)
C90.0460 (6)0.0478 (6)0.0475 (6)0.0016 (5)0.0149 (5)0.0007 (5)
C100.0427 (6)0.0570 (8)0.0664 (8)0.0075 (5)0.0089 (5)0.0013 (6)
C110.0431 (6)0.0616 (8)0.0608 (8)0.0038 (5)0.0007 (5)0.0016 (6)
C120.0540 (6)0.0449 (6)0.0513 (7)0.0041 (5)0.0075 (5)0.0001 (5)
C130.0527 (7)0.0493 (7)0.0603 (7)0.0088 (5)0.0008 (6)0.0007 (6)
C140.0473 (6)0.0539 (7)0.0514 (6)0.0020 (5)0.0011 (5)0.0014 (5)
C150.0787 (10)0.0842 (12)0.0863 (11)0.0217 (9)0.0046 (9)0.0308 (10)
Geometric parameters (Å, º) top
O1—C71.1997 (14)C7—C81.4997 (18)
O2—C121.3700 (16)C8—C91.5106 (17)
O2—C151.414 (2)C8—H8A0.9700
N1—C61.3785 (16)C8—H8B0.9700
N1—N21.3792 (13)C9—C101.3783 (18)
N1—C71.4075 (16)C9—C141.3879 (17)
N2—N31.2829 (16)C10—C111.3898 (19)
N3—C11.3928 (17)C10—H100.9300
C1—C61.3849 (17)C11—C121.3732 (18)
C1—C21.394 (2)C11—H110.9300
C2—C31.368 (2)C12—C131.3878 (18)
C2—H20.9300C13—C141.3775 (18)
C3—C41.398 (2)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.373 (2)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.3924 (17)C15—H15C0.9600
C5—H50.9300
C12—O2—C15118.34 (13)C9—C8—H8A109.5
C6—N1—N2109.58 (10)C7—C8—H8B109.5
C6—N1—C7127.83 (10)C9—C8—H8B109.5
N2—N1—C7122.59 (10)H8A—C8—H8B108.1
N3—N2—N1108.80 (10)C10—C9—C14117.56 (12)
N2—N3—C1108.91 (10)C10—C9—C8122.04 (11)
C6—C1—N3108.63 (11)C14—C9—C8120.32 (11)
C6—C1—C2121.12 (12)C9—C10—C11122.05 (12)
N3—C1—C2130.24 (12)C9—C10—H10119.0
C3—C2—C1116.83 (13)C11—C10—H10119.0
C3—C2—H2121.6C12—C11—C10119.37 (12)
C1—C2—H2121.6C12—C11—H11120.3
C2—C3—C4121.63 (14)C10—C11—H11120.3
C2—C3—H3119.2O2—C12—C11124.94 (12)
C4—C3—H3119.2O2—C12—C13115.46 (12)
C5—C4—C3122.31 (13)C11—C12—C13119.60 (12)
C5—C4—H4118.8C14—C13—C12120.17 (12)
C3—C4—H4118.8C14—C13—H13119.9
C4—C5—C6115.84 (13)C12—C13—H13119.9
C4—C5—H5122.1C13—C14—C9121.25 (12)
C6—C5—H5122.1C13—C14—H14119.4
N1—C6—C1104.08 (10)C9—C14—H14119.4
N1—C6—C5133.61 (12)O2—C15—H15A109.5
C1—C6—C5122.28 (12)O2—C15—H15B109.5
O1—C7—N1117.76 (11)H15A—C15—H15B109.5
O1—C7—C8124.65 (12)O2—C15—H15C109.5
N1—C7—C8117.59 (10)H15A—C15—H15C109.5
C7—C8—C9110.69 (10)H15B—C15—H15C109.5
C7—C8—H8A109.5
C6—N1—N2—N30.65 (15)C6—N1—C7—O12.9 (2)
C7—N1—N2—N3179.84 (12)N2—N1—C7—O1177.64 (13)
N1—N2—N3—C10.39 (16)C6—N1—C7—C8176.55 (11)
N2—N3—C1—C60.00 (16)N2—N1—C7—C82.87 (17)
N2—N3—C1—C2178.46 (15)O1—C7—C8—C914.73 (19)
C6—C1—C2—C30.3 (2)N1—C7—C8—C9164.72 (11)
N3—C1—C2—C3178.03 (15)C7—C8—C9—C10103.08 (14)
C1—C2—C3—C40.3 (2)C7—C8—C9—C1473.62 (15)
C2—C3—C4—C50.4 (3)C14—C9—C10—C110.1 (2)
C3—C4—C5—C60.1 (2)C8—C9—C10—C11176.70 (12)
N2—N1—C6—C10.62 (13)C9—C10—C11—C120.1 (2)
C7—N1—C6—C1179.91 (12)C15—O2—C12—C110.8 (2)
N2—N1—C6—C5177.24 (13)C15—O2—C12—C13178.41 (14)
C7—N1—C6—C52.2 (2)C10—C11—C12—O2178.87 (13)
N3—C1—C6—N10.38 (14)C10—C11—C12—C130.3 (2)
C2—C1—C6—N1179.01 (13)O2—C12—C13—C14178.92 (12)
N3—C1—C6—C5177.78 (12)C11—C12—C13—C140.3 (2)
C2—C1—C6—C50.8 (2)C12—C13—C14—C90.1 (2)
C4—C5—C6—N1178.29 (13)C10—C9—C14—C130.06 (19)
C4—C5—C6—C10.75 (19)C8—C9—C14—C13176.78 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.403.1912 (16)143
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O2
Mr267.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.4209 (1), 24.4894 (5), 10.0555 (2)
β (°) 98.552 (2)
V3)1320.07 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.34 × 0.17 × 0.16
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.784, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
6122, 2707, 2340
Rint0.019
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.08
No. of reflections2707
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.403.1912 (16)143
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the Deanship of Scientific Research at King Abdulaziz University for support of this research via Research Group Track of grant No. (3-102/428).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Abo-Dya, N. E., Tala, S. R., Ghazvini-Zadeh, E. H., Bajaj, K. & El-Feky, S. A. (2010). Synlett, pp. 1337–1340.  Web of Science CrossRef Google Scholar
First citationKatritzky, A. R., Soleiman, M. & Yang, B. (1996a). Heteroat. Chem. 7, 365–367.  CrossRef CAS Web of Science Google Scholar
First citationKatritzky, A. R., Suzuki, K. & Wang, Z. (2005). Synlett, pp. 1656–1665.  Web of Science CrossRef Google Scholar
First citationKatritzky, A. R., Yang, B. & Qian, Y. (1996b). Synlett, pp. 701–702.  CrossRef Google Scholar
First citationSelvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, X., Wang, X., Cheng, C., Kong, L. & Mao, H. (2006). Tetrahedron Lett. 47, 3767–3771.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds