organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-(4-methyl­phen­yl)-5,6-di­phenyl-2,3-di­hydro­pyrazine

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, KSR College of Engineering, KSR Kalvi Nagar, Tiruchengode 637 215, Tamilnadu, India, cDepartment of Chemistry, Government Arts College, C. Mutlur 608 102, Chidambaram, Tamilnadu, India, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 28 September 2012; accepted 2 October 2012; online 6 October 2012)

In the title mol­ecule, C24H22N2, four atoms (N—C—C—N) of the heterocyclic ring, with their attached H atoms, and all atoms of the methyl group, are disordered over two positions; the site-occupancy factor of the major component is 0.713 (6). The major disorder component of the heterocyclic ring adopts a half-chair conformation, with all substituents equatorial. The benzene ring adjacent to the methyl group forms dihedral angles of 79.68 (11) and 80.92 (11)° with the phenyl rings; the dihedral angle between adjacent phenyl rings is 59.10 (11)°. The crystal structure features three C—H⋯π inter­actions.

Related literature

For the biological properties of dihydro­pyrazines and for closely related crystal structures, see: Anuradha et al. (2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o546.], 2011[Anuradha, N., Chitra, S., Thiruvalluvar, A., Pandiarajan, K., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o2598.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2

  • Mr = 338.44

  • Monoclinic, P 21 /c

  • a = 8.1986 (5) Å

  • b = 11.8211 (6) Å

  • c = 19.6686 (7) Å

  • β = 93.638 (4)°

  • V = 1902.38 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.53 mm−1

  • T = 123 K

  • 0.39 × 0.21 × 0.17 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.830, Tmax = 1.000

  • 12585 measured reflections

  • 3892 independent reflections

  • 3044 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.214

  • S = 1.07

  • 3892 reflections

  • 254 parameters

  • 68 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C6–C11 and C12–C17 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACg4i 0.95 2.95 3.743 (3) 142
C19—H19ACg4ii 0.95 2.77 3.578 (3) 143
C22—H22ACg3iii 0.95 2.66 3.590 (3) 165
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our investigations of dihydropyrazine derivatives (Anuradha et al., 2009, 2011) to compare their chemical and biological activities, we have undertaken the X-ray crystal structure analysis of the title compound.

In the title molecule, C24H22N2, Fig.1., the heterocyclic ring with the major disorder component, adopts a half-chair conformation, with all substituents equatorial. The phenyl ring at C1 makes a dihedral angle of 59.10 (11) and 79.68 (11)° with the phenyl ring at C2 and benzene ring at C5A respectively. The dihedral angle between the phenyl ring at C2 and benzene ring at C5A is 80.92 (11)°. Four atoms (N2—C3—C5—N1) of the heterocyclic ring, with their attached H atoms, and all atoms of the methyl group, are disordered over two positions; the site occupancy factors refined to 0.713 (6) and 0.287 (6). The crystal structure is stabilized by three C—H···π interactions (Table 1). No hydrogen bonds are found in the crystal structure.

Related literature top

For the biological properties of dihydropyrazines and for closely related crystal structures, see: Anuradha et al. (2009, 2011).

Experimental top

To a homogeneous solution of benzil (1.05 g, 0.005 mol) and 1-methyl-2-(4'-methylphenyl)-ethanediaminedihydrochloride (1.29 g, 0.005 mol) in ethanol (20 ml), sodium acetate trihydrate (2.04 g, 0.015 mol) was added. The precipitated sodium chloride was filtered off and the filtrate was refluxed for 2 h. On completion of the reaction, as indicated by TLC, the reaction mixture was poured into crushed ice and the resulting solid was filtered and purified by column chromatography on silica gel. Elution with benzene-petroleum ether (4:1 v/v) at 333–353 K gave the pure product. Yield 1.60 g (72%). The pure product was recrystallized in ethyl acetate, to obtain crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2–1.5Ueq(C). Four atoms (N2/C3/C5/N1) of the heterocyclic ring, with their attached H atoms, and all atoms of the methyl group, are disordered over two positions. The anisotropic displacement parameters of equivalent atoms were constrained to be equal; the site occupancy factors refined to 0.713 (6) and 0.287 (6). A damping factor (damp 100 in the final refinement cycles) was applied to avoid large displacements of the disordered hydrogen atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. Only the major disorder component is shown.
2-Methyl-3-(4-methylphenyl)-5,6-diphenyl-2,3-dihydropyrazine top
Crystal data top
C24H22N2F(000) = 720
Mr = 338.44Dx = 1.182 Mg m3
Monoclinic, P21/cMelting point: 450 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 8.1986 (5) ÅCell parameters from 3179 reflections
b = 11.8211 (6) Åθ = 3.7–75.3°
c = 19.6686 (7) ŵ = 0.53 mm1
β = 93.638 (4)°T = 123 K
V = 1902.38 (17) Å3Prism, colourless
Z = 40.39 × 0.21 × 0.17 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3892 independent reflections
Radiation source: Enhance (Cu) X-ray Source3044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 75.5°, θmin = 4.4°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1314
Tmin = 0.830, Tmax = 1.000l = 2421
12585 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1119P)2 + 0.6381P]
where P = (Fo2 + 2Fc2)/3
3892 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.71 e Å3
68 restraintsΔρmin = 0.35 e Å3
Crystal data top
C24H22N2V = 1902.38 (17) Å3
Mr = 338.44Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.1986 (5) ŵ = 0.53 mm1
b = 11.8211 (6) ÅT = 123 K
c = 19.6686 (7) Å0.39 × 0.21 × 0.17 mm
β = 93.638 (4)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
3892 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3044 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.028
12585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06968 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
3892 reflectionsΔρmin = 0.35 e Å3
254 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.2620 (9)0.8818 (4)0.1306 (3)0.0675 (11)0.713 (6)
N2A0.2421 (13)0.9429 (5)0.0086 (3)0.0781 (11)0.713 (6)
C10.2458 (3)0.80641 (19)0.08145 (10)0.0556 (7)
C20.2522 (3)0.8383 (2)0.00937 (11)0.0604 (7)
C3A0.2008 (6)1.0239 (3)0.04467 (17)0.0605 (12)0.713 (6)
C4A0.2286 (11)1.1422 (5)0.0181 (4)0.0792 (15)0.713 (6)
C5A0.3136 (7)0.9952 (4)0.1078 (2)0.0682 (15)0.713 (6)
C60.2095 (3)0.68882 (18)0.10250 (10)0.0518 (6)
C70.2969 (3)0.64263 (19)0.15892 (11)0.0548 (6)
C80.2641 (3)0.53339 (19)0.18009 (12)0.0584 (7)
C90.1433 (3)0.47028 (19)0.14630 (11)0.0590 (7)
C100.0534 (3)0.5165 (2)0.09150 (11)0.0590 (7)
C110.0877 (3)0.62512 (19)0.06909 (10)0.0553 (7)
C120.2806 (3)0.75362 (19)0.04483 (11)0.0566 (7)
C130.3907 (3)0.6650 (2)0.03313 (11)0.0601 (7)
C140.4185 (3)0.5879 (2)0.08442 (13)0.0666 (8)
C150.3345 (3)0.5981 (2)0.14751 (12)0.0664 (8)
C160.2262 (3)0.6859 (2)0.16006 (12)0.0649 (8)
C170.1998 (3)0.7640 (2)0.10907 (11)0.0617 (7)
C180.2782 (4)1.0771 (2)0.16632 (11)0.0667 (8)
C190.3912 (3)1.16373 (19)0.17894 (12)0.0636 (8)
C200.3719 (3)1.24072 (18)0.23056 (11)0.0562 (7)
C210.2402 (3)1.23338 (19)0.27160 (10)0.0548 (7)
C220.1289 (3)1.1477 (2)0.25858 (12)0.0644 (8)
C230.1480 (3)1.0702 (2)0.20701 (12)0.0685 (8)
C240.2223 (4)1.3153 (2)0.32921 (13)0.0775 (10)
N1B0.291 (3)0.8782 (12)0.1267 (9)0.0675 (11)0.287 (6)
N2B0.220 (4)0.9433 (14)0.0092 (8)0.0781 (11)0.287 (6)
C3B0.2792 (15)1.0317 (8)0.0396 (4)0.0605 (12)0.287 (6)
C4B0.195 (3)1.1406 (13)0.0178 (12)0.0792 (15)0.287 (6)
C5B0.2419 (19)0.9953 (10)0.1111 (5)0.0682 (15)0.287 (6)
H7A0.379170.686050.182980.0657*
H8A0.325330.502000.218140.0701*
H1A0.083861.014440.055270.0724*0.713 (6)
H2A0.159541.154270.023810.1186*0.713 (6)
H3A0.200591.197720.052420.1186*0.713 (6)
H4A0.343711.150990.008390.1186*0.713 (6)
H5A0.431480.996420.097510.0819*0.713 (6)
H15A0.351690.544300.182240.0797*
H16A0.169540.693050.203510.0778*
H17A0.126140.825040.118080.0740*
H19A0.482501.169900.151740.0763*
H20A0.449731.299630.238190.0675*
H22A0.037081.141760.285520.0772*
H23A0.070141.011300.199560.0822*
H24A0.106141.324980.336880.1160*
H24B0.279681.285810.370710.1160*
H24C0.269281.388480.317570.1160*
H9A0.122040.395270.160640.0708*
H10A0.032360.474040.068970.0708*
H11A0.027150.655670.030600.0663*
H13A0.447290.657240.010280.0720*
H14A0.495010.528330.076260.0798*
H6B0.399991.040780.037280.0724*0.287 (6)
H7B0.127571.127870.024370.1186*0.287 (6)
H8B0.125891.166040.053650.1186*0.287 (6)
H9B0.277511.198460.010090.1186*0.287 (6)
H10B0.119820.991210.108420.0819*0.287 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.109 (3)0.0531 (11)0.0414 (12)0.0068 (14)0.0131 (15)0.0041 (9)
N2A0.130 (3)0.0623 (12)0.0421 (10)0.0090 (15)0.0068 (13)0.0061 (9)
C10.0714 (13)0.0551 (11)0.0412 (10)0.0034 (10)0.0114 (9)0.0037 (8)
C20.0792 (14)0.0596 (12)0.0427 (10)0.0019 (11)0.0074 (10)0.0046 (9)
C3A0.079 (3)0.0616 (15)0.0408 (12)0.006 (2)0.0041 (17)0.0034 (11)
C4A0.107 (4)0.0719 (16)0.0580 (14)0.006 (2)0.001 (2)0.0083 (12)
C5A0.109 (4)0.0531 (13)0.0435 (13)0.002 (2)0.012 (2)0.0063 (10)
C60.0628 (12)0.0521 (11)0.0420 (10)0.0023 (9)0.0151 (8)0.0009 (8)
C70.0601 (11)0.0573 (12)0.0477 (10)0.0011 (10)0.0090 (9)0.0031 (9)
C80.0653 (13)0.0580 (12)0.0532 (12)0.0075 (10)0.0149 (10)0.0097 (10)
C90.0693 (13)0.0523 (11)0.0581 (12)0.0006 (10)0.0247 (10)0.0006 (9)
C100.0647 (12)0.0634 (13)0.0508 (11)0.0094 (10)0.0192 (10)0.0084 (10)
C110.0634 (12)0.0632 (12)0.0403 (10)0.0030 (10)0.0112 (9)0.0014 (9)
C120.0698 (13)0.0591 (12)0.0424 (10)0.0054 (10)0.0150 (9)0.0026 (9)
C130.0699 (13)0.0636 (13)0.0483 (11)0.0033 (11)0.0167 (10)0.0029 (10)
C140.0758 (14)0.0649 (14)0.0622 (13)0.0046 (12)0.0299 (11)0.0002 (11)
C150.0770 (14)0.0694 (14)0.0561 (13)0.0192 (12)0.0293 (11)0.0120 (10)
C160.0688 (13)0.0823 (16)0.0451 (11)0.0186 (12)0.0166 (10)0.0057 (10)
C170.0686 (13)0.0726 (14)0.0451 (11)0.0058 (11)0.0132 (10)0.0018 (10)
C180.111 (2)0.0513 (12)0.0378 (10)0.0028 (12)0.0060 (11)0.0081 (9)
C190.0850 (15)0.0542 (12)0.0542 (12)0.0065 (11)0.0249 (11)0.0092 (9)
C200.0645 (12)0.0511 (11)0.0539 (11)0.0012 (10)0.0101 (9)0.0056 (9)
C210.0672 (12)0.0562 (12)0.0416 (10)0.0042 (10)0.0093 (9)0.0067 (9)
C220.0682 (13)0.0724 (15)0.0539 (12)0.0063 (12)0.0141 (10)0.0115 (11)
C230.0898 (17)0.0626 (13)0.0522 (12)0.0185 (12)0.0031 (12)0.0072 (10)
C240.104 (2)0.0758 (16)0.0554 (13)0.0010 (15)0.0260 (13)0.0034 (12)
N1B0.109 (3)0.0531 (11)0.0414 (12)0.0068 (14)0.0131 (15)0.0041 (9)
N2B0.130 (3)0.0623 (12)0.0421 (10)0.0090 (15)0.0068 (13)0.0061 (9)
C3B0.079 (3)0.0616 (15)0.0408 (12)0.006 (2)0.0041 (17)0.0034 (11)
C4B0.107 (4)0.0719 (16)0.0580 (14)0.006 (2)0.001 (2)0.0083 (12)
C5B0.109 (4)0.0531 (13)0.0435 (13)0.002 (2)0.012 (2)0.0063 (10)
Geometric parameters (Å, º) top
N1A—C11.315 (6)C20—C211.391 (3)
N1A—C5A1.484 (7)C21—C221.376 (3)
N1B—C5B1.47 (2)C21—C241.505 (3)
N1B—C11.268 (17)C22—C231.383 (3)
N2A—C3A1.475 (7)C3A—H1A1.0000
N2A—C21.287 (6)C3B—H6B1.0000
N2B—C21.316 (17)C4A—H3A0.9800
N2B—C3B1.48 (2)C4A—H4A0.9800
C1—C61.486 (3)C4A—H2A0.9800
C1—C21.471 (3)C4B—H7B0.9800
C2—C121.491 (3)C4B—H8B0.9800
C3A—C4A1.515 (7)C4B—H9B0.9800
C3A—C5A1.538 (6)C5A—H5A1.0000
C3B—C4B1.51 (2)C5B—H10B1.0000
C3B—C5B1.520 (13)C7—H7A0.9500
C5A—C181.546 (5)C8—H8A0.9500
C5B—C181.470 (11)C9—H9A0.9500
C6—C71.394 (3)C10—H10A0.9500
C6—C111.383 (3)C11—H11A0.9500
C7—C81.388 (3)C13—H13A0.9500
C8—C91.377 (3)C14—H14A0.9500
C9—C101.379 (3)C15—H15A0.9500
C10—C111.392 (3)C16—H16A0.9500
C12—C131.392 (3)C17—H17A0.9500
C12—C171.394 (3)C19—H19A0.9500
C13—C141.389 (3)C20—H20A0.9500
C14—C151.386 (3)C22—H22A0.9500
C15—C161.378 (3)C23—H23A0.9500
C16—C171.390 (3)C24—H24B0.9800
C18—C191.393 (4)C24—H24C0.9800
C18—C231.377 (4)C24—H24A0.9800
C19—C201.380 (3)
C1—N1A—C5A114.1 (4)C5A—C3A—H1A110.00
C1—N1B—C5B114.9 (14)C5B—C3B—H6B109.00
C2—N2A—C3A116.3 (5)N2B—C3B—H6B109.00
C2—N2B—C3B115.7 (14)C4B—C3B—H6B109.00
N1A—C1—C6116.2 (3)C3A—C4A—H3A110.00
C2—C1—C6121.89 (19)H2A—C4A—H4A109.00
N1B—C1—C6119.0 (7)C3A—C4A—H4A109.00
N1B—C1—C2118.6 (8)H2A—C4A—H3A110.00
N1A—C1—C2121.8 (3)C3A—C4A—H2A109.00
N2A—C2—C1120.3 (3)H3A—C4A—H4A110.00
N2B—C2—C1119.4 (8)C3B—C4B—H7B109.00
N2B—C2—C12118.2 (7)C3B—C4B—H9B109.00
N2A—C2—C12117.3 (3)H7B—C4B—H8B110.00
C1—C2—C12122.3 (2)C3B—C4B—H8B109.00
C4A—C3A—C5A112.7 (4)H8B—C4B—H9B109.00
N2A—C3A—C4A107.9 (4)H7B—C4B—H9B110.00
N2A—C3A—C5A106.1 (4)C3A—C5A—H5A112.00
N2B—C3B—C4B107.0 (14)C18—C5A—H5A112.00
N2B—C3B—C5B108.9 (11)N1A—C5A—H5A112.00
C4B—C3B—C5B112.9 (12)C18—C5B—H10B103.00
C3A—C5A—C18109.4 (4)C3B—C5B—H10B103.00
N1A—C5A—C3A106.0 (4)N1B—C5B—H10B103.00
N1A—C5A—C18105.7 (4)C8—C7—H7A120.00
N1B—C5B—C18115.2 (10)C6—C7—H7A120.00
C3B—C5B—C18117.0 (9)C7—C8—H8A120.00
N1B—C5B—C3B113.1 (11)C9—C8—H8A120.00
C7—C6—C11119.0 (2)C10—C9—H9A120.00
C1—C6—C7119.1 (2)C8—C9—H9A120.00
C1—C6—C11121.89 (19)C9—C10—H10A120.00
C6—C7—C8120.2 (2)C11—C10—H10A120.00
C7—C8—C9120.4 (2)C6—C11—H11A120.00
C8—C9—C10119.7 (2)C10—C11—H11A120.00
C9—C10—C11120.3 (2)C12—C13—H13A120.00
C6—C11—C10120.4 (2)C14—C13—H13A120.00
C2—C12—C13121.1 (2)C15—C14—H14A120.00
C2—C12—C17120.1 (2)C13—C14—H14A120.00
C13—C12—C17118.8 (2)C14—C15—H15A120.00
C12—C13—C14120.5 (2)C16—C15—H15A120.00
C13—C14—C15119.9 (2)C17—C16—H16A120.00
C14—C15—C16120.3 (2)C15—C16—H16A120.00
C15—C16—C17119.9 (2)C12—C17—H17A120.00
C12—C17—C16120.6 (2)C16—C17—H17A120.00
C5A—C18—C19116.1 (3)C18—C19—H19A120.00
C5A—C18—C23125.8 (3)C20—C19—H19A120.00
C19—C18—C23118.1 (2)C21—C20—H20A119.00
C5B—C18—C19135.8 (6)C19—C20—H20A119.00
C5B—C18—C23105.2 (6)C21—C22—H22A119.00
C18—C19—C20120.7 (2)C23—C22—H22A119.00
C19—C20—C21121.0 (2)C18—C23—H23A119.00
C20—C21—C22117.9 (2)C22—C23—H23A120.00
C20—C21—C24120.9 (2)H24B—C24—H24C109.00
C22—C21—C24121.2 (2)H24A—C24—H24B109.00
C21—C22—C23121.3 (2)H24A—C24—H24C109.00
C18—C23—C22121.0 (2)C21—C24—H24A109.00
N2A—C3A—H1A110.00C21—C24—H24B109.00
C4A—C3A—H1A110.00C21—C24—H24C109.00
C5A—N1A—C1—C29.5 (7)C3A—C5A—C18—C2377.9 (4)
C5A—N1A—C1—C6174.5 (4)C1—C6—C7—C8179.3 (2)
C1—N1A—C5A—C18164.4 (5)C11—C6—C7—C81.4 (3)
C1—N1A—C5A—C3A48.4 (7)C1—C6—C11—C10177.9 (2)
C3A—N2A—C2—C18.4 (10)C7—C6—C11—C100.1 (3)
C2—N2A—C3A—C5A47.6 (9)C6—C7—C8—C91.1 (4)
C2—N2A—C3A—C4A168.7 (7)C7—C8—C9—C100.6 (4)
C3A—N2A—C2—C12175.2 (5)C8—C9—C10—C111.9 (4)
C6—C1—C2—C1221.6 (4)C9—C10—C11—C61.6 (3)
N1A—C1—C6—C744.7 (5)C2—C12—C13—C14178.8 (2)
N1A—C1—C2—C12162.6 (4)C17—C12—C13—C140.5 (4)
C6—C1—C2—N2A162.2 (6)C2—C12—C17—C16179.6 (2)
N1A—C1—C6—C11133.2 (4)C13—C12—C17—C161.3 (4)
C2—C1—C6—C1142.8 (3)C12—C13—C14—C150.9 (4)
N1A—C1—C2—N2A13.6 (7)C13—C14—C15—C161.5 (4)
C2—C1—C6—C7139.4 (2)C14—C15—C16—C170.6 (4)
N2A—C2—C12—C13137.5 (6)C15—C16—C17—C120.8 (4)
N2A—C2—C12—C1740.8 (6)C5A—C18—C19—C20179.3 (3)
C1—C2—C12—C17143.0 (2)C23—C18—C19—C200.5 (4)
C1—C2—C12—C1338.8 (4)C5A—C18—C23—C22179.4 (3)
N2A—C3A—C5A—N1A66.7 (6)C19—C18—C23—C220.6 (4)
C4A—C3A—C5A—C1861.9 (6)C18—C19—C20—C210.5 (4)
N2A—C3A—C5A—C18179.8 (4)C19—C20—C21—C220.7 (3)
C4A—C3A—C5A—N1A175.4 (5)C19—C20—C21—C24178.1 (2)
N1A—C5A—C18—C19143.0 (4)C20—C21—C22—C230.9 (3)
N1A—C5A—C18—C2335.7 (5)C24—C21—C22—C23177.9 (2)
C3A—C5A—C18—C19103.3 (4)C21—C22—C23—C180.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C6–C11 and C12–C17 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg4i0.952.953.743 (3)142
C19—H19A···Cg4ii0.952.773.578 (3)143
C22—H22A···Cg3iii0.952.663.590 (3)165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H22N2
Mr338.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.1986 (5), 11.8211 (6), 19.6686 (7)
β (°) 93.638 (4)
V3)1902.38 (17)
Z4
Radiation typeCu Kα
µ (mm1)0.53
Crystal size (mm)0.39 × 0.21 × 0.17
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.830, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12585, 3892, 3044
Rint0.028
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.214, 1.07
No. of reflections3892
No. of parameters254
No. of restraints68
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.35

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C6–C11 and C12–C17 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cg4i0.952.953.743 (3)142
C19—H19A···Cg4ii0.952.773.578 (3)143
C22—H22A···Cg3iii0.952.663.590 (3)165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnuradha, N., Chitra, S., Thiruvalluvar, A., Pandiarajan, K., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o2598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds