organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3247-o3248

3,5-Bis(benz­yl­oxy)benzoic acid

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bPrograma de Ingenieria Agroindustrial, Universidad San Buenaventura, AA 7154, Santiago de Cali, Colombia, cCase Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, USA, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 2 October 2012; accepted 22 October 2012; online 31 October 2012)

In the title compound, C21H18O4, the outer benzyl rings are disordered over two resolved positions in a 0.50 ratio. The O—CH2 groups form dihedral angles of 4.1 (2) and 10.9 (4)° with the central benzene ring, adopting a syn–anti conformation with respect to this ring. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming chains along [010].

Related literature

For properties of dendrimer chemistry, see: Fréchet (2002[Fréchet, J. M. J. (2002). PNAS, 99, 4782-4787.]). For the diverse applications of 3,5-bis­(benz­yloxy)benzoic acid and its benzoate derivatives, see: Sivakumar et al. (2010[Sivakumar, S., Reddy, M. L., Cowley, A. H. & Vasudevan, K. V. (2010). Dalton Trans. 39, 776-786.]); Remya et al. (2008[Remya, P. N., Biju, S., Reddy, M. L., Cowley, A. H. & Findlater, M. (2008). Inorg. Chem. 47, 7396-7404.]); Hawker & Fréchet (1992[Hawker, C. & Fréchet, J. M. J. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 2459-2469.]). For magnetic and luminiscent properties of lanthanide benzoates, see: Busskamp et al. (2007[Busskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. W. & Turner, D. R. (2007). CrystEngComm, 9, 394-411.]). For the conformation of O—CH2 groups, see: Xiao et al. (2007[Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951-957.]). For related structures, see: Gainsford et al. (2009[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2009). Acta Cryst. E65, o3261-o3262.]); Zhu et al. (2009[Zhu, P., Zhao, Y., Chen, H., Cui, Q. & Wei, Q. (2009). Acta Cryst. E65, o823.]). For graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 350-362. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O4

  • Mr = 334.37

  • Triclinic, [P \overline 1]

  • a = 5.2801 (2) Å

  • b = 11.6830 (5) Å

  • c = 14.4803 (7) Å

  • α = 83.303 (2)°

  • β = 80.775 (2)°

  • γ = 79.031 (1)°

  • V = 862.17 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.43 × 0.11 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5626 measured reflections

  • 3084 independent reflections

  • 1801 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.163

  • S = 1.03

  • 3084 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.82 2.6333 (18) 175
C20—H20⋯O1ii 0.93 2.66 3.507 (13) 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dendrimer chemistry provides new opportunities of research in design of supramolecular architectures (Fréchet, 2002). 3,5-Bis-benzyloxy-benzoic acid (I) was used for the synthesis of luminescent lanthanide coordination complexes that display unique line-like emission bands (Sivakumar et al., 2010; Remya et al., 2008). Lanthanide benzoates and their derivatives have potential applications in a wide variety of fields because their novel luminescent and magnetic properties (Busskamp et al., 2007). The title compound was also used in the synthesis of monodispersed dendritic polyesters with removable chain ends using a convergent growth process (Hawker & Fréchet, 1992). Other related compounds were crystallized and studied by X-ray diffraction (Gainsford et al., 2009; Zhu et al., 2009) and their parameters can be used to compare with the parameters of the title system. A perspective view of the molecule of (I), showing the atomic numbering scheme, is given in Fig. 1. The title compound crystallizes in the triclinic system with a P-1 space group. The outer benzyl rings are disordered over two resolved positions in a 0.50 ratio. The molecules are bonded by intermolecular O—H···O hydrogen bonds of moderate character (Desiraju & Steiner, 1999). Indeed, carbonylic O2 and O1 are linked with an O···O distance of 2.633 (2) Å. The propagation of these interactions generate centrosymmetric rings with graphs-set notation R22(8) (Etter, 1990). Other weak C—H···O intermolecular interactions (Nardelli, 1995) contribute to stabilization of the molecules along b (Fig. 2). Other classical hydrogen bond interactions are not exhibited in the crystal packing. In the title structure, the O—CH2 groups adopt a syn-anti conformation with respect to the central phenyl ring, similar to the behavior presented in the 1,3-Dibenzyloxy-5-(bromomethyl)-benzene system (Zhu et al., 2009), while in other similar structures, the O—CH2 groups adopt a syn-syn conformation (Xiao et al., 2007). The O—CH2 groups, C4—O3—C8—C9 and C6—O4—C15—C16 are essentially planar (r.m.s. deviation of non-hydrogen atoms= 0.0355 Å and 0.0217 Å respectivelly) and form dihedral angles of 4.1 (2)° and 10.9 (4)° with the central phenyl ring.

Related literature top

For properties of dendrimer chemistry, see: Fréchet (2002). For the diverse applications of 3,5-bis(benzyloxy)benzoic acid and its benzoate derivatives, see: Sivakumar et al. (2010); Remya et al. (2008); Hawker & Fréchet (1992). For magnetic and luminiscent properties of lanthanide benzoates, see: Busskamp et al. (2007). For the conformation of O—CH2 groups, see: Xiao et al. (2007). For related structures, see: Gainsford et al. (2009); Zhu et al. (2009). For graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995); Desiraju & Steiner (1999).

Experimental top

Methyl 3,5-dihydroxybenzoate (2.0g, 12 mmol) was dissolved in 50 ml of acetonitrile and refluxed with potassium carbonate (8.0 g, 58 mmol) for 30 min. The resulting reaction mixture was refluxed at 68° C for 48 h following the addition of benzyl bromide (4.0 g, 24 mmol). The acetonitrile was evaporated off, and the residual mixture was poured into ice cold water. Methyl 3,5-bis-(benzyloxy)benzoate was obtained as a white precipitate. (2.0 g, 5.74 mmol), were taken from the precipitate, which was dissolved in 50 ml of ethanol. To this solution was added (1 g, 17.77 mmol) of KOH and it was placed under reflux. The reaction was followed by TLC until the presence of KOH was not longer observed. The reaction mixture was poured into ice cold water, acidified with dilute HCl, and the resulting precipitate was filtered, washed, dried, and recrystallized from ethanol. Yield, 1.67 g (89%). 3,5-Bis(benzyloxy)benzoic Acid, 1H-NMR (500 MHz) δ(p.p.m.), 7.45–7.46(d, 4H, J= 7 Hz), 7.39–7.41 (t, 4H, J=7 Hz), 7.32–7.35 (t, 2H, J= 7 Hz), 7.16(d, 2H, J= 2.5 Hz), 6.92–6.93 (t, 1H, J= 2.5 Hz), 5.15 (s, 4H). 13C-NMR: 166.88, 159.35, 136.64, 132.79, 138.45, 127.90, 127.63, 107.96, 106.50, 69.45. F T—IR (KBr): 3033 (Ar—H); 1690, 1159, 733, 698 cm-1.

Refinement top

All H-atoms were positioned geometrically using riding model with [C—H= 0.93 Å for aromatic, C—H= 0.82 Å for hydroxyl and C—H= 0.97 Å for methylene H atoms. Uiso(H)= 1.2Ueq(C) for aryl and methylene H atoms and 1.5Ueq(O) for hydroxyl H-atom]. During the structure determination disordered sites around the two benzyl groups were found. Trial refinements were used with the split-atom approach for these extra sites with a constrained 50% occupancy each.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of chains running along [010]. Symmetry code: (i) -x,-y + 1,-z + 1; (ii) -x + 2,-y,-z + 1
3,5-Bis(benzyloxy)benzoic acid top
Crystal data top
C21H18O4Z = 2
Mr = 334.37F(000) = 352
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2801 (2) ÅCell parameters from 3147 reflections
b = 11.6830 (5) Åθ = 2.9–26.4°
c = 14.4803 (7) ŵ = 0.09 mm1
α = 83.303 (2)°T = 295 K
β = 80.775 (2)°Block, colourless
γ = 79.031 (1)°0.43 × 0.11 × 0.10 mm
V = 862.17 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
1801 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.2°, θmin = 3.5°
CCD rotation images, thick slices scansh = 66
5626 measured reflectionsk = 1414
3084 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.094P)2 + 0.0032P]
where P = (Fo2 + 2Fc2)/3
3084 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C21H18O4γ = 79.031 (1)°
Mr = 334.37V = 862.17 (6) Å3
Triclinic, P1Z = 2
a = 5.2801 (2) ÅMo Kα radiation
b = 11.6830 (5) ŵ = 0.09 mm1
c = 14.4803 (7) ÅT = 295 K
α = 83.303 (2)°0.43 × 0.11 × 0.10 mm
β = 80.775 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1801 reflections with I > 2σ(I)
5626 measured reflectionsRint = 0.036
3084 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3084 reflectionsΔρmin = 0.15 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2556 (3)0.46372 (17)0.58387 (13)0.0623 (5)
C20.4505 (3)0.43437 (15)0.65014 (12)0.0597 (5)
C30.4690 (3)0.51344 (17)0.71085 (12)0.0644 (5)
H30.35890.58580.71090.077*
C40.6534 (3)0.48473 (16)0.77226 (12)0.0639 (5)
C50.8181 (4)0.37791 (17)0.77144 (13)0.0673 (5)
H50.94130.35850.81250.081*
C60.7989 (4)0.29977 (17)0.70920 (14)0.0690 (5)
C70.6163 (3)0.32636 (17)0.64802 (13)0.0690 (5)
H70.60420.27340.60640.083*
C80.8524 (4)0.55033 (19)0.88979 (15)0.0773 (6)
H8A1.02360.53210.85340.093*
H8B0.82820.48540.93660.093*
C90.8300 (5)0.65976 (19)0.93627 (17)0.0705 (6)0.50
C110.592 (6)0.802 (3)1.0445 (16)0.132 (8)0.50
H110.44290.82901.08490.159*0.50
C100.626 (5)0.699 (2)0.9975 (15)0.112 (6)0.50
H100.49330.65531.01090.134*0.50
C120.798 (6)0.854 (3)1.0238 (16)0.128 (9)0.50
H120.79880.91921.05460.153*0.50
C131.003 (4)0.8186 (14)0.9621 (15)0.109 (4)0.50
H131.14090.86000.94780.131*0.50
C141.007 (3)0.7216 (16)0.9208 (10)0.089 (4)0.50
H141.15100.69780.87710.107*0.50
C151.0002 (5)0.1234 (2)0.64080 (18)0.0965 (8)
H15A1.04310.16630.58060.116*
H15B0.83720.09660.64070.116*
O10.2389 (2)0.39389 (12)0.52819 (9)0.0771 (4)
O20.1076 (2)0.56551 (11)0.58910 (9)0.0786 (5)
H20.00560.57460.55060.118*
O30.6562 (3)0.56890 (12)0.82994 (9)0.0821 (5)
O40.9731 (3)0.19714 (13)0.71375 (11)0.0918 (5)
C161.2137 (4)0.01969 (19)0.65555 (17)0.0819 (6)0.50
C171.311 (3)0.0007 (14)0.7341 (13)0.123 (6)0.50
H171.26470.05030.78120.148*0.50
C181.498 (2)0.1088 (13)0.7431 (10)0.118 (4)0.50
H181.55680.13190.80080.141*0.50
C191.592 (4)0.1779 (19)0.672 (2)0.107 (7)0.50
H191.71330.24610.67960.128*0.50
C201.506 (2)0.1445 (10)0.5925 (11)0.119 (4)0.50
H201.57080.19030.54270.143*0.50
C211.3231 (14)0.0455 (7)0.5771 (6)0.102 (2)0.50
H211.27350.02220.51800.123*0.50
C21A1.388 (3)0.0108 (12)0.7188 (12)0.087 (4)0.50
H21A1.36490.07140.75740.105*0.50
C17A1.2212 (16)0.0818 (6)0.6129 (5)0.091 (2)0.50
H17A1.08790.08630.57920.110*0.50
C18A1.420 (2)0.1752 (10)0.6191 (9)0.104 (3)0.50
H18A1.43440.23950.58510.124*0.50
C19A1.604 (4)0.170 (2)0.680 (2)0.116 (9)0.50
H19A1.73970.23290.68570.139*0.50
C20A1.588 (3)0.0765 (13)0.7298 (13)0.109 (4)0.50
H20A1.70850.07370.76930.131*0.50
C11A0.945 (5)0.8536 (15)0.9366 (15)0.122 (5)0.50
H11A1.03220.91360.90860.146*0.50
C9A0.8300 (5)0.65976 (19)0.93627 (17)0.0705 (6)0.50
C10A0.986 (4)0.7480 (16)0.8932 (12)0.101 (4)0.50
H10A1.10730.73520.83970.121*0.50
C12A0.777 (5)0.870 (2)1.021 (2)0.118 (8)0.50
H12A0.75120.93881.04960.141*0.50
C14A0.663 (4)0.678 (2)1.0200 (13)0.081 (3)0.50
H14A0.56430.62161.04770.097*0.50
C13A0.645 (4)0.776 (2)1.0596 (13)0.096 (5)0.50
H13A0.53980.78401.11720.115*0.50
C16A1.2137 (4)0.01969 (19)0.65555 (17)0.0819 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0606 (10)0.0610 (12)0.0628 (11)0.0002 (9)0.0110 (9)0.0101 (9)
C20.0577 (10)0.0599 (12)0.0602 (11)0.0032 (8)0.0116 (8)0.0069 (9)
C30.0648 (11)0.0612 (12)0.0641 (11)0.0030 (8)0.0142 (9)0.0097 (9)
C40.0703 (11)0.0595 (12)0.0620 (11)0.0017 (9)0.0167 (9)0.0125 (9)
C50.0692 (11)0.0666 (13)0.0666 (12)0.0001 (9)0.0224 (9)0.0100 (10)
C60.0713 (11)0.0596 (12)0.0744 (12)0.0063 (9)0.0215 (10)0.0127 (10)
C70.0713 (11)0.0648 (13)0.0712 (12)0.0012 (10)0.0203 (9)0.0145 (9)
C80.0778 (12)0.0754 (14)0.0830 (14)0.0039 (10)0.0320 (11)0.0114 (11)
C90.0755 (13)0.0689 (13)0.0719 (14)0.0086 (12)0.0259 (12)0.0111 (11)
C110.158 (16)0.098 (11)0.134 (13)0.007 (10)0.007 (10)0.043 (10)
C100.144 (13)0.095 (10)0.103 (12)0.048 (9)0.001 (8)0.017 (8)
C120.20 (2)0.100 (12)0.089 (10)0.025 (10)0.011 (10)0.054 (8)
C130.111 (6)0.079 (8)0.146 (14)0.022 (6)0.025 (7)0.022 (7)
C140.090 (4)0.078 (7)0.096 (10)0.009 (4)0.006 (6)0.018 (6)
C150.1051 (16)0.0757 (16)0.1102 (18)0.0201 (12)0.0423 (14)0.0365 (13)
O10.0803 (9)0.0747 (9)0.0783 (9)0.0080 (7)0.0301 (7)0.0240 (7)
O20.0789 (8)0.0692 (9)0.0882 (10)0.0108 (7)0.0338 (7)0.0184 (7)
O30.0962 (10)0.0701 (9)0.0839 (9)0.0106 (7)0.0419 (8)0.0244 (7)
O40.1028 (10)0.0712 (10)0.1016 (11)0.0268 (8)0.0480 (8)0.0317 (8)
C160.0851 (14)0.0636 (14)0.0955 (17)0.0050 (11)0.0223 (13)0.0177 (12)
C170.118 (12)0.134 (9)0.086 (5)0.055 (7)0.017 (7)0.000 (5)
C180.134 (10)0.096 (9)0.104 (5)0.034 (7)0.035 (7)0.007 (6)
C190.131 (12)0.051 (9)0.136 (13)0.002 (7)0.035 (11)0.007 (8)
C200.116 (7)0.079 (7)0.158 (11)0.010 (5)0.011 (6)0.051 (6)
C210.107 (5)0.080 (5)0.120 (6)0.019 (4)0.032 (4)0.041 (4)
C21A0.082 (6)0.072 (4)0.107 (9)0.013 (4)0.023 (5)0.037 (5)
C17A0.112 (5)0.066 (4)0.096 (5)0.002 (3)0.026 (4)0.011 (3)
C18A0.137 (9)0.054 (5)0.115 (6)0.002 (5)0.022 (6)0.007 (4)
C19A0.090 (9)0.087 (15)0.138 (14)0.036 (8)0.012 (11)0.002 (9)
C20A0.087 (6)0.082 (7)0.158 (9)0.002 (5)0.038 (6)0.007 (6)
C11A0.173 (15)0.083 (10)0.123 (10)0.058 (9)0.027 (9)0.006 (7)
C9A0.0755 (13)0.0689 (13)0.0719 (14)0.0086 (12)0.0259 (12)0.0111 (11)
C10A0.143 (9)0.094 (9)0.076 (7)0.058 (6)0.004 (5)0.011 (6)
C12A0.127 (10)0.082 (8)0.162 (19)0.026 (7)0.043 (11)0.042 (8)
C14A0.098 (5)0.088 (9)0.059 (6)0.027 (5)0.002 (4)0.017 (5)
C13A0.109 (7)0.112 (15)0.069 (4)0.025 (8)0.001 (5)0.027 (6)
C16A0.0851 (14)0.0636 (14)0.0955 (17)0.0050 (11)0.0223 (13)0.0177 (12)
Geometric parameters (Å, º) top
C1—O11.236 (2)C15—H15B0.9700
C1—O21.296 (2)O2—H20.8200
C1—C21.484 (2)C16—C171.302 (18)
C2—C31.374 (2)C16—C211.424 (8)
C2—C71.393 (2)C17—C181.45 (2)
C3—C41.391 (2)C17—H170.9300
C3—H30.9300C18—C191.36 (3)
C4—O31.366 (2)C18—H180.9300
C4—C51.379 (3)C19—C201.30 (4)
C5—C61.383 (3)C19—H190.9300
C5—H50.9300C20—C211.379 (14)
C6—O41.367 (2)C20—H200.9300
C6—C71.381 (3)C21—H210.9300
C7—H70.9300C21A—C20A1.33 (2)
C8—O31.425 (2)C21A—H21A0.9300
C8—C91.490 (3)C17A—C18A1.369 (14)
C8—H8A0.9700C17A—H17A0.9300
C8—H8B0.9700C18A—C19A1.42 (4)
C9—C141.26 (2)C18A—H18A0.9300
C9—C101.33 (3)C19A—C20A1.36 (3)
C11—C121.32 (5)C19A—H19A0.9300
C11—C101.41 (4)C20A—H20A0.9300
C11—H110.9300C11A—C12A1.40 (3)
C10—H100.9300C11A—C10A1.41 (3)
C12—C131.32 (3)C11A—H11A0.9300
C12—H120.9300C10A—H10A0.9300
C13—C141.34 (3)C12A—C13A1.42 (4)
C13—H130.9300C12A—H12A0.9300
C14—H140.9300C14A—C13A1.32 (3)
C15—O41.413 (3)C14A—H14A0.9300
C15—C161.510 (3)C13A—H13A0.9300
C15—H15A0.9700
O1—C1—O2123.33 (16)C16—C15—H15A109.8
O1—C1—C2121.00 (16)O4—C15—H15B109.8
O2—C1—C2115.67 (16)C16—C15—H15B109.8
C3—C2—C7121.05 (17)H15A—C15—H15B108.3
C3—C2—C1120.35 (16)C1—O2—H2109.5
C7—C2—C1118.59 (16)C4—O3—C8118.81 (14)
C2—C3—C4119.62 (17)C6—O4—C15117.70 (15)
C2—C3—H3120.2C17—C16—C21121.6 (8)
C4—C3—H3120.2C17—C16—C15120.5 (8)
O3—C4—C5124.69 (16)C21—C16—C15117.4 (4)
O3—C4—C3115.23 (16)C16—C17—C18115.3 (14)
C5—C4—C3120.07 (17)C16—C17—H17122.4
C4—C5—C6119.60 (17)C18—C17—H17122.4
C4—C5—H5120.2C19—C18—C17123.6 (17)
C6—C5—H5120.2C19—C18—H18118.2
O4—C6—C7124.09 (17)C17—C18—H18118.2
O4—C6—C5114.69 (16)C20—C19—C18117.0 (17)
C7—C6—C5121.21 (17)C20—C19—H19121.5
C6—C7—C2118.43 (17)C18—C19—H19121.5
C6—C7—H7120.8C19—C20—C21124.2 (14)
C2—C7—H7120.8C19—C20—H20117.9
O3—C8—C9107.77 (15)C21—C20—H20117.9
O3—C8—H8A110.2C20—C21—C16117.1 (9)
C9—C8—H8A110.2C20—C21—H21121.4
O3—C8—H8B110.2C16—C21—H21121.4
C9—C8—H8B110.2C20A—C21A—H21A116.9
H8A—C8—H8B108.5C18A—C17A—H17A119.2
C14—C9—C10114.7 (15)C17A—C18A—C19A117.3 (13)
C14—C9—C8122.2 (8)C17A—C18A—H18A121.3
C10—C9—C8123.1 (13)C19A—C18A—H18A121.3
C12—C11—C10112 (3)C20A—C19A—C18A122.3 (15)
C12—C11—H11124.2C20A—C19A—H19A118.8
C10—C11—H11124.2C18A—C19A—H19A118.8
C9—C10—C11126 (3)C21A—C20A—C19A116.2 (16)
C9—C10—H10116.9C21A—C20A—H20A121.9
C11—C10—H10116.9C19A—C20A—H20A121.9
C13—C12—C11124 (3)C12A—C11A—C10A121.5 (19)
C13—C12—H12117.9C12A—C11A—H11A119.3
C11—C12—H12117.9C10A—C11A—H11A119.3
C12—C13—C14118 (2)C11A—C10A—H10A121.4
C12—C13—H13121.1C11A—C12A—C13A117 (2)
C14—C13—H13121.1C11A—C12A—H12A121.6
C9—C14—C13125.4 (14)C13A—C12A—H12A121.6
C9—C14—H14117.3C13A—C14A—H14A120.4
C13—C14—H14117.3C14A—C13A—C12A125 (2)
O4—C15—C16109.24 (18)C14A—C13A—H13A117.6
O4—C15—H15A109.8C12A—C13A—H13A117.6
O1—C1—C2—C3179.21 (16)C10—C9—C14—C131.5 (18)
O2—C1—C2—C31.0 (2)C8—C9—C14—C13177.8 (11)
O1—C1—C2—C70.4 (3)C12—C13—C14—C90 (3)
O2—C1—C2—C7179.85 (16)C5—C4—O3—C84.4 (3)
C7—C2—C3—C41.0 (3)C3—C4—O3—C8175.13 (16)
C1—C2—C3—C4179.76 (15)C9—C8—O3—C4173.58 (17)
C2—C3—C4—O3179.84 (15)C7—C6—O4—C1512.0 (3)
C2—C3—C4—C50.6 (3)C5—C6—O4—C15167.82 (19)
O3—C4—C5—C6179.43 (16)C16—C15—O4—C6176.14 (18)
C3—C4—C5—C60.1 (3)O4—C15—C16—C1711.0 (9)
C4—C5—C6—O4179.37 (17)O4—C15—C16—C21161.8 (4)
C4—C5—C6—C70.4 (3)C21—C16—C17—C1812.9 (17)
O4—C6—C7—C2179.70 (18)C15—C16—C17—C18174.6 (9)
C5—C6—C7—C20.1 (3)C16—C17—C18—C198 (2)
C3—C2—C7—C60.6 (3)C17—C18—C19—C201 (3)
C1—C2—C7—C6179.44 (16)C18—C19—C20—C211 (3)
O3—C8—C9—C14114.4 (7)C19—C20—C21—C163.7 (18)
O3—C8—C9—C1066.4 (9)C17—C16—C21—C2011.5 (13)
C14—C9—C10—C111 (2)C15—C16—C21—C20175.8 (6)
C8—C9—C10—C11179.8 (15)C17A—C18A—C19A—C20A1 (3)
C12—C11—C10—C93 (3)C18A—C19A—C20A—C21A0 (3)
C10—C11—C12—C134 (4)C10A—C11A—C12A—C13A1 (3)
C11—C12—C13—C143 (4)C11A—C12A—C13A—C14A3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.822.6333 (18)175
C20—H20···O1ii0.932.663.507 (13)153
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H18O4
Mr334.37
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.2801 (2), 11.6830 (5), 14.4803 (7)
α, β, γ (°)83.303 (2), 80.775 (2), 79.031 (1)
V3)862.17 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.11 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5626, 3084, 1801
Rint0.036
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.163, 1.03
No. of reflections3084
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.822.6333 (18)174.5
C20—H20···O1ii0.932.663.507 (13)152.6
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z+1.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and CG thanks the Universidad San Buenaventura, Cali, Colombia, for partial financial support.

References

First citationBusskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. W. & Turner, D. R. (2007). CrystEngComm, 9, 394–411.  CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 350–362. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFréchet, J. M. J. (2002). PNAS, 99, 4782-4787.  Web of Science PubMed Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2009). Acta Cryst. E65, o3261–o3262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHawker, C. & Fréchet, J. M. J. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 2459–2469.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRemya, P. N., Biju, S., Reddy, M. L., Cowley, A. H. & Findlater, M. (2008). Inorg. Chem. 47, 7396–7404.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, S., Reddy, M. L., Cowley, A. H. & Vasudevan, K. V. (2010). Dalton Trans. 39, 776–786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, P., Zhao, Y., Chen, H., Cui, Q. & Wei, Q. (2009). Acta Cryst. E65, o823.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3247-o3248
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds