supplementary materials


hy2591 scheme

Acta Cryst. (2012). E68, m1332    [ doi:10.1107/S1600536812041116 ]

Dichlorido(6-methyl-2,2'-bipyridine-[kappa]2N,N')cobalt(II)

N. Akbarzadeh Torbati, A. R. Rezvani and H. Saravani

Abstract top

In the title compound, [CoCl2(C11H10N2)], the CoII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 6-methyl-2,2'-bipyridine ligand and two terminal Cl atoms. Intermolecular C-H...Cl hydrogen bonds and [pi]-[pi] stacking interactions between the pyridine rings [centroid-centroid distance = 3.745 (3) Å] are present in the crystal.

Comment top

In recent years, we have reported the synthesis and crystal structures of [Co(6,6'-dmbipy)Cl2], (II) (Akbarzadeh Torbati et al., 2010b), [Co(Ph2phen)Cl2], (III) (Akbarzadeh Torbati et al., 2010a) and [Co(biq)Cl2], (IV) (Akbarzadeh Torbati et al., 2011) (6,6'-dmbipy = 6,6'-dimethyl-2,2'-bipyridine, Ph2phen = 2,9-dimethyl-1,10-phenanthroline, biq = 2,2'-biquinoline). 6-Methyl-2,2'-bipyridine (6-mbipy) is a good ligand and a few complexes with 6-mbipy have been prepared, such as that of [Hg(6-mbipy)Cl2], (V) (Ahmadi, Ebadi et al., 2008), [Pt(6-mbipy)Cl4], (VI) (Amani et al., 2009), [Pb4(NO3)8(6-mbipy)4], (VII) (Ahmadi et al., 2009), [Zn(6-mbipy)Br2], (VIII) (Kalateh et al., 2010), [Zn(6-mbipy)Cl2], (IX) (Ahmadi, Kalateh et al., 2008), [Pd(6-mbipy)Cl2], (X) (Newkome et al., 1982), [Ru(6-mbipy)3][BF4]2, (XI) (Onggo et al., 2005), [Fe(6-mbipy)3][ClO4]2.6-mbipy, (XII) (Onggo et al., 1990) and [Cd(6-mbipy)Br2(DMSO)], (XIII) (Shirvan & Haydari Dezfuli, 2012). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the CoII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 6-methyl-2,2'-bipyridine ligand and two terminal Cl atoms (Table 1). In the crystal, intermolecular C—H···Cl hydrogen bonds (Table 2) and ππ contacts (Fig. 2) between the pyridine rings, Cg2···Cg3i [centroid–centroid distance = 3.745 (3) Å, symmetry code: (i) 2-x, 2-y, -z, Cg2 and Cg3 are the centroids of the N1/C2–C6 ring and N2/C7–C11 ring, respectively], stabilize the structure.

Related literature top

For related structures, see: Ahmadi et al. (2009); Ahmadi, Ebadi et al. (2008); Ahmadi, Kalateh et al. (2008); Akbarzadeh Torbati et al. (2010a,b, 2011); Amani et al. (2009); Kalateh et al. (2010); Newkome et al. (1982); Onggo et al. (1990, 2005); Shirvan & Haydari Dezfuli (2012).

Experimental top

For the preparation of the title compound, a solution of 6-methyl-2,2'-bipyridine (0.23 g, 1.34 mmol) in methanol (15 ml) was added to a solution of CoCl2.6H2O (0.37 g, 1.34 mmol) in acetonitrile (15 ml) and the resulting blue solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, blue block crystals of the title compound were isolated (yield: 0.30 g, 74.6%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Dichlorido(6-methyl-2,2'-bipyridine-κ2N,N')cobalt(II) top
Crystal data top
[CoCl2(C11H10N2)]F(000) = 604
Mr = 300.04Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 998 reflections
a = 7.4395 (6) Åθ = 2.3–29.3°
b = 9.4723 (8) ŵ = 1.79 mm1
c = 17.6439 (15) ÅT = 298 K
β = 96.131 (7)°Block, blue
V = 1236.24 (18) Å30.20 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3305 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 29.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.730, Tmax = 0.780k = 1112
7959 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0444P)2 + 1.4058P]
where P = (Fo2 + 2Fc2)/3
3305 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[CoCl2(C11H10N2)]V = 1236.24 (18) Å3
Mr = 300.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4395 (6) ŵ = 1.79 mm1
b = 9.4723 (8) ÅT = 298 K
c = 17.6439 (15) Å0.20 × 0.15 × 0.14 mm
β = 96.131 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3305 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2481 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.780Rint = 0.043
7959 measured reflectionsθmax = 29.3°
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.85 e Å3
S = 1.12Δρmin = 0.48 e Å3
3305 reflectionsAbsolute structure: ?
145 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6700 (9)0.9546 (6)0.2127 (3)0.0841 (16)
H1A0.78220.90860.22960.101*
H1B0.57490.88580.20640.101*
H1C0.64301.02330.24980.101*
C20.6857 (6)1.0262 (5)0.1385 (3)0.0549 (10)
C30.6639 (6)1.1710 (5)0.1282 (3)0.0661 (12)
H30.63591.22790.16830.079*
C40.6843 (7)1.2286 (5)0.0589 (3)0.0679 (13)
H40.67061.32540.05180.081*
C50.7246 (6)1.1457 (4)0.0005 (3)0.0572 (10)
H50.73891.18500.04780.069*
C60.7439 (4)1.0016 (4)0.0116 (2)0.0430 (8)
C70.7826 (5)0.8999 (4)0.0480 (2)0.0446 (8)
C80.8106 (6)0.9397 (5)0.1220 (2)0.0582 (11)
H80.81101.03450.13570.070*
C90.8380 (7)0.8356 (6)0.1748 (3)0.0686 (13)
H90.85740.85990.22430.082*
C100.8363 (7)0.6973 (6)0.1535 (3)0.0703 (13)
H100.85120.62640.18880.084*
C110.8125 (6)0.6635 (5)0.0799 (3)0.0601 (11)
H110.81380.56900.06560.072*
N10.7245 (4)0.9445 (3)0.08066 (17)0.0431 (7)
N20.7872 (4)0.7629 (3)0.02746 (18)0.0465 (7)
Co10.76711 (7)0.73253 (5)0.08569 (3)0.04458 (16)
Cl11.03449 (15)0.68766 (14)0.15119 (7)0.0683 (3)
Cl20.54399 (16)0.59698 (13)0.11655 (7)0.0673 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.114 (5)0.085 (4)0.056 (3)0.010 (3)0.024 (3)0.014 (3)
C20.049 (2)0.055 (2)0.061 (2)0.0011 (18)0.0059 (18)0.0083 (19)
C30.056 (2)0.061 (3)0.081 (3)0.005 (2)0.005 (2)0.021 (2)
C40.060 (3)0.040 (2)0.103 (4)0.0006 (19)0.004 (3)0.003 (2)
C50.052 (2)0.046 (2)0.073 (3)0.0005 (17)0.003 (2)0.013 (2)
C60.0343 (16)0.0436 (18)0.050 (2)0.0035 (14)0.0007 (14)0.0110 (15)
C70.0353 (16)0.050 (2)0.048 (2)0.0082 (15)0.0024 (14)0.0068 (16)
C80.054 (2)0.070 (3)0.049 (2)0.012 (2)0.0021 (18)0.018 (2)
C90.066 (3)0.102 (4)0.039 (2)0.010 (3)0.0119 (19)0.003 (2)
C100.073 (3)0.090 (4)0.050 (3)0.005 (3)0.015 (2)0.015 (2)
C110.061 (2)0.063 (3)0.057 (3)0.003 (2)0.012 (2)0.009 (2)
N10.0412 (15)0.0412 (15)0.0465 (17)0.0016 (12)0.0027 (13)0.0022 (13)
N20.0442 (15)0.0499 (17)0.0458 (16)0.0021 (13)0.0070 (13)0.0040 (14)
Co10.0474 (3)0.0416 (3)0.0458 (3)0.0009 (2)0.0098 (2)0.0099 (2)
Cl10.0500 (5)0.0788 (8)0.0754 (7)0.0019 (5)0.0033 (5)0.0350 (6)
Cl20.0590 (6)0.0654 (7)0.0786 (8)0.0129 (5)0.0130 (5)0.0186 (6)
Geometric parameters (Å, º) top
C1—C21.490 (7)C7—N21.346 (5)
C1—H1A0.9600C7—C81.397 (5)
C1—H1B0.9600C8—C91.386 (7)
C1—H1C0.9600C8—H80.9300
C2—N11.336 (5)C9—C101.363 (8)
C2—C31.391 (6)C9—H90.9300
C3—C41.363 (7)C10—C111.367 (6)
C3—H30.9300C10—H100.9300
C4—C51.368 (7)C11—N21.347 (5)
C4—H40.9300C11—H110.9300
C5—C61.386 (5)Co1—N12.034 (3)
C5—H50.9300Co1—N22.038 (3)
C6—N11.355 (5)Co1—Cl12.2320 (13)
C6—C71.477 (5)Co1—Cl22.2121 (11)
C2—C1—H1A109.5C9—C8—C7118.9 (4)
C2—C1—H1B109.5C9—C8—H8120.6
H1A—C1—H1B109.5C7—C8—H8120.6
C2—C1—H1C109.5C10—C9—C8119.5 (4)
H1A—C1—H1C109.5C10—C9—H9120.2
H1B—C1—H1C109.5C8—C9—H9120.2
N1—C2—C3120.2 (4)C9—C10—C11119.5 (5)
N1—C2—C1116.8 (4)C9—C10—H10120.3
C3—C2—C1122.9 (4)C11—C10—H10120.3
C4—C3—C2119.3 (4)N2—C11—C10122.1 (5)
C4—C3—H3120.4N2—C11—H11119.0
C2—C3—H3120.4C10—C11—H11119.0
C3—C4—C5120.8 (4)C2—N1—C6120.6 (3)
C3—C4—H4119.6C2—N1—Co1125.7 (3)
C5—C4—H4119.6C6—N1—Co1113.7 (2)
C4—C5—C6118.4 (4)C7—N2—C11119.3 (3)
C4—C5—H5120.8C7—N2—Co1113.4 (3)
C6—C5—H5120.8C11—N2—Co1127.2 (3)
N1—C6—C5120.7 (4)N1—Co1—N281.08 (13)
N1—C6—C7115.3 (3)N1—Co1—Cl2117.79 (9)
C5—C6—C7123.9 (4)N2—Co1—Cl2117.29 (10)
N2—C7—C8120.7 (4)N1—Co1—Cl1109.69 (10)
N2—C7—C6116.0 (3)N2—Co1—Cl1112.31 (10)
C8—C7—C6123.3 (4)Cl2—Co1—Cl1114.38 (5)
N1—C2—C3—C40.6 (7)C5—C6—N1—Co1178.0 (3)
C1—C2—C3—C4178.6 (5)C7—C6—N1—Co13.0 (4)
C2—C3—C4—C50.4 (7)C8—C7—N2—C112.5 (6)
C3—C4—C5—C60.2 (7)C6—C7—N2—C11176.6 (3)
C4—C5—C6—N10.5 (6)C8—C7—N2—Co1174.3 (3)
C4—C5—C6—C7178.4 (4)C6—C7—N2—Co16.6 (4)
N1—C6—C7—N22.4 (5)C10—C11—N2—C70.9 (7)
C5—C6—C7—N2176.5 (4)C10—C11—N2—Co1175.4 (4)
N1—C6—C7—C8178.5 (3)C2—N1—Co1—N2176.8 (3)
C5—C6—C7—C82.6 (6)C6—N1—Co1—N25.0 (2)
N2—C7—C8—C91.9 (6)C2—N1—Co1—Cl260.6 (3)
C6—C7—C8—C9177.1 (4)C6—N1—Co1—Cl2121.3 (2)
C7—C8—C9—C100.2 (7)C2—N1—Co1—Cl172.6 (3)
C8—C9—C10—C111.8 (8)C6—N1—Co1—Cl1105.6 (2)
C9—C10—C11—N21.2 (8)C7—N2—Co1—N16.3 (3)
C3—C2—N1—C60.3 (6)C11—N2—Co1—N1177.1 (4)
C1—C2—N1—C6178.9 (4)C7—N2—Co1—Cl2123.1 (2)
C3—C2—N1—Co1178.3 (3)C11—N2—Co1—Cl260.4 (4)
C1—C2—N1—Co10.9 (6)C7—N2—Co1—Cl1101.4 (3)
C5—C6—N1—C20.3 (5)C11—N2—Co1—Cl175.2 (4)
C7—C6—N1—C2178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cl1i0.962.783.706 (6)163
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
Co1—N12.034 (3)Co1—Cl12.2320 (13)
Co1—N22.038 (3)Co1—Cl22.2121 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cl1i0.962.783.706 (6)163
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Acknowledgements top

We are grateful to the University of Sistan and Baluchestan and Shahid Beheshti University for financial support.

references
References top

Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.

Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169–m1170.

Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.

Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Amani, V. & Khavasi, H. R. (2010a). Acta Cryst. E66, m1236.

Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010b). Acta Cryst. E66, m1284.

Akbarzadeh Torbati, N., Rezvani, A. R., Saravani, H., Amani, V. & Khavasi, H. R. (2011). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 41, 507–512.

Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m1241.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783.

Onggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19–30.

Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1124.