supplementary materials


hy2592 scheme

Acta Cryst. (2012). E68, m1351    [ doi:10.1107/S1600536812042134 ]

trans-Dichloridobis(4-nitroaniline-[kappa]N1)palladium(II)

T.-J. Feng

Abstract top

In the title compound, [PdCl2(C6H6N2O2)2], the PdII atom is coordinated in a distorted square-planar geometry by two N atoms from two 4-nitroaniline ligands and two Cl atoms in a trans arrangement. Intermolecular N-H...Cl hydrogen bonds involving the amino groups and chloride anions lead to a chain along [100]. These chains are further self-assembled into a three-dimensional network through N-H...O and N-H...Cl hydrogen bonds.

Comment top

Palladium compounds have attracted much attention due to their applications in homogeneous and heterogeneous catalyses (Padmanabhan et al., 1985). Some dramatic results in the homogeneous catalysis of the reactions of organic compounds, particularly the successful commercial exploitation of the Wacker one stage process for the homogeneous catalytic oxidation of ethylene to acetaldehyde in the presence of palladium(II) chloride (Hartley, 1973), have contributed to this interest. In this paper, we report the crystal structure of the title compound, a new palladium(II) complex obtained by the reaction of 4-nitroaniline with palladium chloride in ethanol solution.

As illustrated in Fig. 1, the PdII atom exhibits a distorted square-planar coordination geometry, defined by two N atoms from two 4-nitroaniline ligands and two chloride atoms. The molecule adopts the trans configuration. The bond distances of Pd—N [2.061 (2) Å] and Pd—Cl [2.302 (3) Å] are comparable with the values found in related complexes (Chen et al., 2002; Newkome et al., 1982). The dihedral angle between the aromatic ring plane and the square plane around Pd1 is 70.54 (2)°. Intermolecular N—H···Cl hydrogen bonds involving the amino groups and chlorine anions (Table 1) lead to a chain along [100] (Fig. 2). These chains are further self-assembled into a three-dimensional network through N—H···O and N—H···Cl hydrogen bonds (Fig. 3).

Related literature top

For background to the application of palladium compounds in catalysis, see: Hartley (1973); Padmanabhan et al. (1985). For related structures, see: Chen et al. (2002); Newkome et al. (1982).

Experimental top

A mixture of palladium chloride (0.1 mmol, 0.018 g) and 4-nitroaniline (0.2 mmol, 0.027 g) in 10 ml of anhydrous ethanol was sealed in an autoclave equipped with a Teflon liner (23 ml) and then heated at 353 K for 2 days. Yellow crystals were obtained by slow evaporation of the solvent at room temperature (yield: 49% based on 4-nitroaniline).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C,N). The hightest peak is located 0.99 Å from Pd1 and the deepest hole is located 1.24 Å from H5.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the chain structure in the title compound. Hydrogen bonds are shown as pink dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. Crystal packing of the title compound. Hydrogen bonds are shown as pink dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
trans-Dichloridobis(4-nitroaniline-κN1)palladium(II) top
Crystal data top
[PdCl2(C6H6N2O2)2]F(000) = 896
Mr = 453.56Dx = 1.878 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5300 reflections
a = 5.6014 (8) Åθ = 1.3–28.0°
b = 26.246 (4) ŵ = 1.51 mm1
c = 11.0763 (16) ÅT = 296 K
β = 99.828 (2)°Block, yellow
V = 1604.5 (4) Å30.33 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2135 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.626, Tmax = 0.688k = 2831
4453 measured reflectionsl = 1310
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.059P)2 + 0.1195P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
2135 reflectionsΔρmax = 0.50 e Å3
208 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack (1983), 696 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.46 (4)
Crystal data top
[PdCl2(C6H6N2O2)2]V = 1604.5 (4) Å3
Mr = 453.56Z = 4
Monoclinic, CcMo Kα radiation
a = 5.6014 (8) ŵ = 1.51 mm1
b = 26.246 (4) ÅT = 296 K
c = 11.0763 (16) Å0.33 × 0.30 × 0.26 mm
β = 99.828 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2135 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2075 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.688Rint = 0.018
4453 measured reflectionsθmax = 25.2°
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.50 e Å3
S = 1.06Δρmin = 0.37 e Å3
2135 reflectionsAbsolute structure: Flack (1983), 696 Friedel pairs
208 parametersFlack parameter: 0.46 (4)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7813 (8)0.46008 (19)0.2257 (5)0.0324 (10)
C20.6105 (10)0.4507 (2)0.2984 (6)0.0405 (13)
H20.48960.47450.30370.049*
C30.6200 (9)0.4053 (2)0.3641 (5)0.0406 (12)
H30.50980.39850.41610.049*
C40.7981 (9)0.37081 (19)0.3496 (5)0.0358 (11)
C50.9644 (10)0.3795 (2)0.2764 (5)0.0403 (12)
H51.07980.35470.26920.048*
C60.9651 (10)0.4245 (2)0.2123 (5)0.0380 (12)
H61.08010.43110.16290.046*
C71.1775 (9)0.66743 (19)0.2754 (5)0.0313 (10)
C80.9834 (10)0.6949 (2)0.3044 (5)0.0371 (11)
H80.89610.68280.36280.045*
C90.9216 (10)0.7412 (2)0.2439 (5)0.0380 (12)
H90.79170.76050.26060.046*
C101.0586 (8)0.75750 (18)0.1588 (4)0.0307 (10)
C111.2582 (9)0.73067 (19)0.1320 (5)0.0358 (11)
H111.35030.74320.07620.043*
C121.3145 (9)0.6845 (2)0.1918 (5)0.0366 (11)
H121.44450.66530.17530.044*
Cl11.2293 (4)0.55635 (8)0.0903 (2)0.0436 (6)
Cl20.7793 (4)0.56838 (7)0.4000 (2)0.0408 (5)
N10.7776 (8)0.50756 (15)0.1568 (4)0.0356 (9)
H1A0.62530.51980.14270.043*
H1B0.82080.50100.08370.043*
N21.2299 (8)0.61827 (16)0.3332 (4)0.0365 (9)
H2A1.21090.62020.41220.044*
H2B1.38510.60990.33160.044*
N30.8016 (11)0.3224 (2)0.4165 (6)0.0463 (15)
N40.9877 (9)0.80407 (15)0.0883 (5)0.0404 (10)
O10.6631 (11)0.3158 (2)0.4860 (6)0.0769 (16)
O20.9473 (9)0.28974 (16)0.3938 (5)0.0609 (12)
O30.7966 (11)0.8248 (2)0.1012 (5)0.0674 (18)
O41.1159 (9)0.82003 (16)0.0195 (5)0.0601 (12)
Pd11.00552 (7)0.562350 (12)0.24606 (5)0.02914 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.035 (3)0.035 (3)0.0012 (19)0.005 (2)0.000 (2)
C20.029 (3)0.037 (3)0.056 (4)0.001 (2)0.010 (3)0.008 (3)
C30.034 (3)0.045 (3)0.047 (3)0.006 (2)0.020 (2)0.003 (3)
C40.038 (3)0.032 (3)0.036 (3)0.006 (2)0.004 (2)0.002 (2)
C50.039 (3)0.041 (3)0.042 (3)0.006 (2)0.010 (2)0.003 (2)
C60.038 (3)0.044 (3)0.033 (3)0.003 (2)0.011 (2)0.002 (2)
C70.029 (2)0.029 (2)0.036 (2)0.0016 (19)0.005 (2)0.005 (2)
C80.040 (3)0.039 (3)0.036 (3)0.005 (2)0.016 (2)0.004 (2)
C90.035 (2)0.033 (3)0.046 (3)0.0080 (19)0.007 (3)0.005 (2)
C100.028 (2)0.031 (2)0.033 (3)0.0011 (18)0.006 (2)0.000 (2)
C110.033 (2)0.038 (3)0.039 (3)0.000 (2)0.013 (2)0.001 (2)
C120.029 (2)0.040 (3)0.041 (3)0.004 (2)0.007 (2)0.002 (2)
Cl10.0384 (10)0.0581 (11)0.0374 (11)0.0009 (7)0.0154 (8)0.0016 (7)
Cl20.0420 (10)0.0447 (9)0.0380 (11)0.0022 (6)0.0133 (8)0.0019 (7)
N10.033 (2)0.035 (2)0.038 (2)0.0002 (17)0.0059 (18)0.0011 (18)
N20.036 (2)0.036 (2)0.036 (2)0.0006 (17)0.0009 (18)0.0037 (18)
N30.059 (3)0.043 (3)0.037 (3)0.003 (3)0.008 (3)0.004 (2)
N40.045 (2)0.031 (2)0.045 (3)0.0020 (19)0.007 (2)0.001 (2)
O10.084 (4)0.069 (3)0.087 (4)0.002 (3)0.040 (3)0.028 (3)
O20.076 (3)0.044 (2)0.056 (3)0.008 (2)0.005 (2)0.006 (2)
O30.086 (4)0.068 (4)0.057 (3)0.042 (3)0.036 (3)0.024 (3)
O40.064 (3)0.053 (3)0.071 (3)0.004 (2)0.031 (2)0.023 (2)
Pd10.02850 (17)0.02877 (19)0.03039 (19)0.00214 (16)0.00572 (12)0.00207 (17)
Geometric parameters (Å, º) top
C1—C21.374 (8)C9—H90.9300
C1—C61.416 (8)C10—C111.395 (7)
C1—N11.459 (7)C10—N41.468 (6)
C2—C31.394 (9)C11—C121.390 (7)
C2—H20.9300C11—H110.9300
C3—C41.376 (8)C12—H120.9300
C3—H30.9300Cl1—Pd12.305 (2)
C4—C51.354 (8)Cl2—Pd12.297 (2)
C4—N31.470 (8)N1—Pd12.060 (4)
C5—C61.379 (8)N1—H1A0.9000
C5—H50.9300N1—H1B0.9000
C6—H60.9300N2—Pd12.062 (4)
C7—C121.375 (8)N2—H2A0.9000
C7—C81.387 (7)N2—H2B0.9000
C7—N21.448 (7)N3—O11.196 (9)
C8—C91.403 (8)N3—O21.238 (8)
C8—H80.9300N4—O41.207 (7)
C9—C101.381 (8)N4—O31.231 (7)
C2—C1—C6122.3 (5)C12—C11—C10117.6 (5)
C2—C1—N1120.6 (5)C12—C11—H11121.2
C6—C1—N1117.0 (5)C10—C11—H11121.2
C1—C2—C3119.4 (5)C7—C12—C11119.9 (5)
C1—C2—H2120.3C7—C12—H12120.1
C3—C2—H2120.3C11—C12—H12120.1
C4—C3—C2117.7 (5)C1—N1—Pd1113.1 (3)
C4—C3—H3121.1C1—N1—H1A109.0
C2—C3—H3121.1Pd1—N1—H1A109.0
C5—C4—C3123.1 (5)C1—N1—H1B109.0
C5—C4—N3119.7 (5)Pd1—N1—H1B109.0
C3—C4—N3117.2 (5)H1A—N1—H1B107.8
C4—C5—C6120.9 (5)C7—N2—Pd1111.5 (3)
C4—C5—H5119.5C7—N2—H2A109.3
C6—C5—H5119.5Pd1—N2—H2A109.3
C5—C6—C1116.5 (5)C7—N2—H2B109.3
C5—C6—H6121.8Pd1—N2—H2B109.3
C1—C6—H6121.8H2A—N2—H2B108.0
C12—C7—C8122.4 (5)O1—N3—O2123.6 (6)
C12—C7—N2119.7 (5)O1—N3—C4119.7 (6)
C8—C7—N2117.9 (5)O2—N3—C4116.6 (6)
C7—C8—C9118.6 (5)O4—N4—O3122.9 (5)
C7—C8—H8120.7O4—N4—C10119.2 (5)
C9—C8—H8120.7O3—N4—C10117.9 (5)
C10—C9—C8118.3 (5)N1—Pd1—N2178.86 (17)
C10—C9—H9120.8N1—Pd1—Cl291.68 (14)
C8—C9—H9120.8N2—Pd1—Cl288.43 (15)
C9—C10—C11123.2 (5)N1—Pd1—Cl187.97 (15)
C9—C10—N4119.3 (4)N2—Pd1—Cl191.91 (15)
C11—C10—N4117.5 (4)Cl2—Pd1—Cl1179.48 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.403.293 (5)175
N1—H1B···Cl2ii0.902.713.474 (5)143
N2—H2A···O3iii0.902.523.287 (7)143
N2—H2B···Cl2iv0.902.463.310 (5)157
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.403.293 (5)175
N1—H1B···Cl2ii0.902.713.474 (5)143
N2—H2A···O3iii0.902.523.287 (7)143
N2—H2B···Cl2iv0.902.463.310 (5)157
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y, z.
Acknowledgements top

The author acknowledges Lanzhou Jiaotong University for supporting this work.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, Y.-B., Li, Z.-J., Qin, Y.-Y., Kang, Y., Wu, L. & Yao, Y.-G. (2002). Chin. J. Struct. Chem. 21, 530–532.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Hartley, F. R. (1973). The Chemistry of Platinum and Palladium. New York: John Wiley and Sons.

Newkome, G. R., Fronczek, F. R., Grupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783.

Padmanabhan, V. M., Patel, R. P. & Ranganathan, T. N. (1985). Acta Cryst. C41, 1305–1307.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.