supplementary materials


hy2596 scheme

Acta Cryst. (2012). E68, m1407    [ doi:10.1107/S160053681204367X ]

Dibromido(2,9-dimethyl-1,10-phenanthroline-[kappa]2N,N')cobalt(II) acetonitrile monosolvate

S. A. Shirvan, M. Aghajeri, S. Haydari Dezfuli, F. Khazali and A. Borsalani

Abstract top

In the title compound, [CoBr2(C14H12N2)]·CH3CN, the CoII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a chelating 2,9-dimethyl-1,10-phenanthroline ligand and two terminal Br atoms. In the crystal, [pi]-[pi] contacts between the pyridine and benzene rings [centroid-centroid distances = 3.828 (5), 3.782 (5), 3.880 (5) and 3.646 (5) Å] stabilize the structure.

Comment top

2,9-Dimethyl-1,10-phenanthroline (dmphen) is a good bidentate ligand, and numerous complexes with dmphen have been prepared, such as that of mercury (Alizadeh et al., 2009), copper (Lemoine et al., 2003), nickel (Ding et al., 2006), gold (Robinson & Sinn, 1975), platinum (Fanizzi et al., 1991) and cobalt (Akbarzadeh Torbati et al., 2010). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the CoII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a chelating dmphen ligand and two terminal Br atoms. The Co—Br and Co—N bond lengths (Table 1) and angles are normal. In the crystal, ππ contacts between the pyridine and benzene rings (Fig. 2), Cg3···Cg3i, Cg3···Cg4i, Cg3···Cg4ii and Cg4···Cg4ii [symmetry codes: (i) -x, 1-y, 1-z; (ii) 1-x, 1-y, 1-z, Cg3 and Cg4 are the centroids of the N2, C8–C11, C13 ring and C5–C8, C13, C14 ring, respectively], with centroid–centroid distances of 3.828 (5), 3.782 (5), 3.880 (5) and 3.646 (5) Å, stabilize the structure.

Related literature top

For related structures, see: Akbarzadeh Torbati et al. (2010); Alizadeh et al. (2009); Ding et al. (2006); Fanizzi et al. (1991); Lemoine et al. (2003); Robinson & Sinn (1975).

Experimental top

For the preparation of the title compound, a solution of 2,9-dimethyl-1,10-phenanthroline (0.28 g, 1.33 mmol) in methanol (20 ml) was added to a solution of CoBr2 (0.29 g, 1.33 mmol) in acetonitrile (15 ml) and the resulting blue solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, blue block crystals of the title compound were isolated (yield: 0.46 g, 73.9%).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found 0.92 Å from Br2 the deepest hole 1.02 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound.
Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N')cobalt(II) acetonitrile monosolvate top
Crystal data top
[CoBr2(C14H12N2)]·C2H3NF(000) = 916
Mr = 468.04Dx = 1.806 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8417 reflections
a = 7.6380 (5) Åθ = 2.0–26.0°
b = 12.7943 (6) ŵ = 5.64 mm1
c = 17.9545 (11) ÅT = 120 K
β = 101.128 (5)°Block, blue
V = 1721.58 (18) Å30.35 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3366 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.259, Tmax = 0.459k = 1513
8417 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1187P)2]
where P = (Fo2 + 2Fc2)/3
3366 reflections(Δ/σ)max = 0.003
200 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[CoBr2(C14H12N2)]·C2H3NV = 1721.58 (18) Å3
Mr = 468.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6380 (5) ŵ = 5.64 mm1
b = 12.7943 (6) ÅT = 120 K
c = 17.9545 (11) Å0.35 × 0.20 × 0.15 mm
β = 101.128 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3366 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2345 reflections with I > 2σ(I)
Tmin = 0.259, Tmax = 0.459Rint = 0.101
8417 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.194Δρmax = 1.11 e Å3
S = 1.02Δρmin = 1.03 e Å3
3366 reflectionsAbsolute structure: ?
200 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.15502 (14)0.35537 (10)0.33642 (7)0.0162 (3)
Br10.31107 (12)0.37421 (8)0.23591 (6)0.0249 (3)
Br20.12001 (11)0.26909 (8)0.29292 (6)0.0233 (3)
C10.3312 (15)0.1227 (8)0.3918 (6)0.032 (2)
H1A0.39060.14760.35280.038*
H1B0.20670.11290.37110.038*
H1C0.38280.05740.41120.038*
C20.3520 (11)0.2011 (8)0.4548 (5)0.020 (2)
C30.4380 (12)0.1773 (8)0.5287 (6)0.024 (2)
H30.48250.11030.53970.029*
C40.4587 (10)0.2517 (8)0.5861 (5)0.022 (2)
H40.51510.23500.63530.026*
C50.3920 (10)0.3531 (8)0.5678 (5)0.0176 (19)
C60.4112 (11)0.4362 (8)0.6219 (6)0.022 (2)
H60.47120.42370.67120.026*
C70.3452 (11)0.5316 (8)0.6035 (5)0.022 (2)
H70.35700.58350.64040.026*
C80.2557 (10)0.5549 (7)0.5268 (5)0.0178 (19)
C90.1829 (12)0.6513 (8)0.5024 (7)0.026 (2)
H90.18940.70650.53650.031*
C100.1008 (12)0.6654 (8)0.4275 (7)0.028 (2)
H100.05640.73080.41070.033*
C110.0845 (10)0.5820 (7)0.3772 (5)0.0166 (18)
C120.0028 (13)0.5960 (8)0.2951 (6)0.027 (2)
H12A0.10070.54810.28240.033*
H12B0.08280.58250.26350.033*
H12C0.04600.66640.28700.033*
C130.2355 (10)0.4741 (7)0.4725 (5)0.0165 (19)
C140.3071 (10)0.3727 (7)0.4935 (6)0.0182 (19)
C150.1720 (12)0.9623 (8)0.5702 (6)0.027 (2)
C160.1350 (16)1.0197 (10)0.6364 (7)0.039 (3)
H16A0.23411.06450.65600.059*
H16B0.11760.97100.67500.059*
H16C0.02931.06120.62160.059*
N10.2885 (9)0.2967 (6)0.4379 (4)0.0182 (16)
N20.1506 (8)0.4887 (6)0.3979 (4)0.0138 (15)
N30.2013 (13)0.9203 (8)0.5206 (7)0.043 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0134 (5)0.0219 (7)0.0121 (6)0.0001 (5)0.0010 (4)0.0009 (5)
Br10.0201 (4)0.0384 (6)0.0167 (5)0.0082 (4)0.0050 (4)0.0041 (4)
Br20.0160 (4)0.0306 (6)0.0222 (5)0.0061 (4)0.0014 (3)0.0057 (4)
C10.042 (6)0.025 (6)0.027 (6)0.011 (5)0.005 (5)0.000 (5)
C20.016 (4)0.028 (5)0.017 (5)0.007 (4)0.002 (3)0.002 (4)
C30.022 (4)0.018 (5)0.032 (6)0.005 (4)0.008 (4)0.006 (4)
C40.011 (4)0.041 (6)0.011 (5)0.006 (4)0.004 (3)0.008 (4)
C50.006 (3)0.032 (5)0.015 (5)0.001 (3)0.003 (3)0.000 (4)
C60.013 (4)0.037 (6)0.015 (5)0.007 (4)0.004 (3)0.002 (4)
C70.019 (4)0.033 (6)0.012 (5)0.005 (4)0.002 (4)0.002 (4)
C80.011 (4)0.026 (5)0.015 (5)0.006 (3)0.001 (3)0.006 (4)
C90.016 (4)0.022 (5)0.041 (7)0.002 (4)0.013 (4)0.000 (5)
C100.018 (4)0.027 (6)0.040 (7)0.003 (4)0.010 (4)0.003 (5)
C110.009 (4)0.023 (5)0.019 (5)0.000 (3)0.007 (3)0.002 (4)
C120.025 (5)0.024 (5)0.034 (6)0.000 (4)0.006 (4)0.008 (5)
C130.007 (4)0.027 (5)0.015 (5)0.005 (3)0.003 (3)0.002 (4)
C140.008 (4)0.024 (5)0.023 (5)0.004 (3)0.002 (3)0.005 (4)
C150.023 (4)0.030 (6)0.027 (6)0.005 (4)0.002 (4)0.005 (5)
C160.045 (6)0.041 (7)0.026 (6)0.007 (5)0.005 (5)0.003 (5)
N10.008 (3)0.027 (4)0.020 (4)0.007 (3)0.004 (3)0.001 (3)
N20.006 (3)0.025 (4)0.009 (4)0.003 (3)0.003 (3)0.001 (3)
N30.043 (5)0.042 (6)0.050 (7)0.019 (5)0.018 (5)0.001 (5)
Geometric parameters (Å, º) top
Co1—N12.051 (8)C8—C91.390 (14)
Co1—N22.036 (8)C8—C131.409 (13)
Co1—Br12.3592 (14)C9—C101.382 (16)
Co1—Br22.3682 (14)C9—H90.9300
C1—C21.497 (14)C10—C111.387 (14)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11—N21.321 (12)
C1—H1C0.9600C11—C121.507 (14)
C2—N11.329 (12)C12—H12A0.9600
C2—C31.395 (14)C12—H12B0.9600
C3—C41.389 (14)C12—H12C0.9600
C3—H30.9300C13—N21.383 (11)
C4—C51.409 (14)C13—C141.429 (13)
C4—H40.9300C14—N11.382 (12)
C5—C141.389 (13)C15—N31.099 (15)
C5—C61.428 (14)C15—C161.471 (16)
C6—C71.337 (14)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—C81.444 (13)C16—H16C0.9600
C7—H70.9300
N2—Co1—N183.3 (3)C10—C9—H9119.9
N2—Co1—Br1113.1 (2)C8—C9—H9119.9
N1—Co1—Br1118.62 (19)C9—C10—C11119.9 (9)
N2—Co1—Br2117.58 (18)C9—C10—H10120.0
N1—Co1—Br2112.3 (2)C11—C10—H10120.0
Br1—Co1—Br2110.02 (6)N2—C11—C10122.1 (9)
C2—C1—H1A109.5N2—C11—C12117.1 (8)
C2—C1—H1B109.5C10—C11—C12120.8 (9)
H1A—C1—H1B109.5C11—C12—H12A109.5
C2—C1—H1C109.5C11—C12—H12B109.5
H1A—C1—H1C109.5H12A—C12—H12B109.5
H1B—C1—H1C109.5C11—C12—H12C109.5
N1—C2—C3120.1 (9)H12A—C12—H12C109.5
N1—C2—C1117.5 (8)H12B—C12—H12C109.5
C3—C2—C1122.3 (9)N2—C13—C8122.6 (8)
C4—C3—C2121.4 (9)N2—C13—C14117.6 (8)
C4—C3—H3119.3C8—C13—C14119.8 (8)
C2—C3—H3119.3N1—C14—C5122.0 (8)
C3—C4—C5118.2 (9)N1—C14—C13117.8 (8)
C3—C4—H4120.9C5—C14—C13120.1 (8)
C5—C4—H4120.9N3—C15—C16179.1 (13)
C14—C5—C4118.1 (9)C15—C16—H16A109.5
C14—C5—C6119.0 (9)C15—C16—H16B109.5
C4—C5—C6122.9 (9)H16A—C16—H16B109.5
C7—C6—C5121.9 (9)C15—C16—H16C109.5
C7—C6—H6119.1H16A—C16—H16C109.5
C5—C6—H6119.1H16B—C16—H16C109.5
C6—C7—C8120.7 (9)C2—N1—C14120.0 (8)
C6—C7—H7119.7C2—N1—Co1129.6 (7)
C8—C7—H7119.7C14—N1—Co1110.4 (6)
C9—C8—C13116.7 (9)C11—N2—C13118.5 (8)
C9—C8—C7124.8 (9)C11—N2—Co1130.6 (6)
C13—C8—C7118.5 (9)C13—N2—Co1110.9 (6)
C10—C9—C8120.1 (10)
N1—C2—C3—C40.4 (13)C1—C2—N1—C14178.8 (8)
C1—C2—C3—C4178.9 (9)C3—C2—N1—Co1179.3 (6)
C2—C3—C4—C50.7 (13)C1—C2—N1—Co12.1 (12)
C3—C4—C5—C140.8 (11)C5—C14—N1—C20.4 (12)
C3—C4—C5—C6177.9 (8)C13—C14—N1—C2179.6 (7)
C14—C5—C6—C71.9 (12)C5—C14—N1—Co1179.6 (6)
C4—C5—C6—C7179.3 (8)C13—C14—N1—Co10.4 (8)
C5—C6—C7—C81.8 (12)N2—Co1—N1—C2179.2 (7)
C6—C7—C8—C9179.9 (8)Br1—Co1—N1—C268.1 (8)
C6—C7—C8—C131.6 (12)Br2—Co1—N1—C262.1 (7)
C13—C8—C9—C102.0 (12)N2—Co1—N1—C140.0 (5)
C7—C8—C9—C10179.6 (8)Br1—Co1—N1—C14112.7 (5)
C8—C9—C10—C112.6 (13)Br2—Co1—N1—C14117.1 (5)
C9—C10—C11—N22.2 (13)C10—C11—N2—C131.2 (11)
C9—C10—C11—C12179.3 (8)C12—C11—N2—C13178.4 (7)
C9—C8—C13—N21.1 (11)C10—C11—N2—Co1177.4 (6)
C7—C8—C13—N2179.5 (7)C12—C11—N2—Co10.2 (10)
C9—C8—C13—C14180.0 (7)C8—C13—N2—C110.7 (11)
C7—C8—C13—C141.6 (11)C14—C13—N2—C11179.6 (7)
C4—C5—C14—N10.7 (11)C8—C13—N2—Co1178.2 (6)
C6—C5—C14—N1178.1 (7)C14—C13—N2—Co10.7 (8)
C4—C5—C14—C13179.3 (7)N1—Co1—N2—C11179.1 (7)
C6—C5—C14—C131.9 (11)Br1—Co1—N2—C1160.8 (7)
N2—C13—C14—N10.7 (10)Br2—Co1—N2—C1169.2 (7)
C8—C13—C14—N1178.2 (7)N1—Co1—N2—C130.4 (5)
N2—C13—C14—C5179.3 (7)Br1—Co1—N2—C13117.9 (5)
C8—C13—C14—C51.8 (11)Br2—Co1—N2—C13112.1 (5)
C3—C2—N1—C140.2 (12)
Selected bond lengths (Å) top
Co1—N12.051 (8)Co1—Br12.3592 (14)
Co1—N22.036 (8)Co1—Br22.3682 (14)
Acknowledgements top

We are grateful to the Omidieh Branch, Islamic Azad University, for financial support.

references
References top

Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284.

Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, C.-F., Miao, Y.-F., Tian, B.-Q., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m1062–m1063.

Fanizzi, F. P., Intini, F. P., Maresca, L., Natile, G., Lanfranchi, M. & Tiripicchio, A. (1991). J. Chem. Soc. Dalton Trans. pp. 1007–1015.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lemoine, P., Viossat, B. & Daran, J.-C. (2003). Acta Cryst. E59, m17–m19.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Robinson, W. T. & Sinn, E. (1975). J. Chem. Soc. Dalton Trans. pp. 726–731.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.