metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­bis­­{μ-4-[6-(4-carboxyphenyl)-4,4′-bipyridin-2-yl]benzoato-κ2O:N4′}zinc] di­methyl­formamide tetra­solvate]

aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: songsy@ciac.jl.cn

(Received 15 October 2012; accepted 23 October 2012; online 27 October 2012)

In the title compound, {[Zn(C24H15N2O4)2(H2O)2]·4C3H7NO}n, the ZnII ion is located on an inversion center and is six-coordinated by two N atoms from two ligands, two carboxylate O atoms from two other symmetry-related ligands and two O atoms from two water mol­ecules, furnishing a slightly distorted octa­hedral geometry. The ZnII atoms are connected by the bridging ligands into a layer parallel to (101). O—H⋯O hydrogen bonds link the layers and the dimethyl­formamide solvent mol­ecules. ππ inter­actions between the pyridine and benzene rings [centroid–centroid distances = 3.7428 (17) and 3.7619 (17) Å] and intra­layer O—H⋯O hydrogen bonds are also present.

Related literature

For the design of transition metal complexes with supra­molecular structures, see: Li et al. (2011[Li, H.-J., Gao, Z.-Q. & Gu, J.-Z. (2011). Acta Cryst. E67, m919.]); Wang et al. (2010[Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534-540.]); Yang et al. (2007[Yang, X.-P., Jones, R. A., Rivers, J. H. & Lai, R. P. (2007). Dalton Trans. pp. 3936-3942.]). For related structures, see: Song et al. (2012[Song, S.-Y., Song, X.-Z., Zhao, S.-N., Qin, C., Su, S.-Q., Zhu, M., Hao, Z.-M. & Zhang, H.-J. (2012). Dalton Trans. 41, 10412-10421.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C24H15N2O4)2(H2O)2]·4C3H7NO

  • Mr = 1184.57

  • Monoclinic, P 21 /n

  • a = 7.4744 (5) Å

  • b = 17.7122 (13) Å

  • c = 21.4993 (15) Å

  • β = 95.075 (1)°

  • V = 2835.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.915

  • 15534 measured reflections

  • 5606 independent reflections

  • 3804 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.158

  • S = 1.05

  • 5606 reflections

  • 385 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O6i 0.85 (1) 1.93 (2) 2.750 (4) 164 (4)
O1W—H1B⋯O2 0.85 (1) 1.98 (2) 2.718 (3) 145 (4)
O3—H3A⋯O2ii 0.86 (1) 1.77 (2) 2.592 (3) 161 (5)
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The coordination chemistry of transition metal complexes is a rapidly growing area due to the ability of the resulting complexes to find applications in materials science with luminescent, magnetic, catalytic, and gas absorption and separation properties (Li et al., 2011; Yang et al., 2007). Multifunctional ligands can link metal ions into one-, two- or three-dimensional structures (Wang et al., 2010). In order to extend the investigations in this field, we used a multifunctional ligand, 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoic acid (bpydbH2), to design and synthesize the title zinc(II) complex and its structure is reported here.

The asymmetric unit of the title complex contains a half ZnII ion, one (bpydbH)- ligand, one aqua ligand and two lattice dimethylformamide (DMF) molecules. As shown in Fig. 1, the ZnII ion, lying on an inversion center, is six-coordinated by two N atoms from two (bpydbH)- ligands, two deprotonated carboxylate O atoms from the other two (bpydbH)- ligands and two aqua ligands, furnishing a slightly distorted octahedral geometry. The bond distances and angles are in the normal range (Song et al., 2012). The Zn nodes are extended by the (bpydbH)- linkers in four directions, forming a layer parallel to (101) (Fig. 2). Intralayer O—H···O hydrogen bonds stabilize the layer. O—H···O hydrogen bonds link the layers and the dimethylformamide solvent molecules. ππ interactions between the pyridine and benzene rings [centroid–centroid distances = 3.7428 (17) and 3.7619 (17) Å] are also present.

Related literature top

For the design of supramolecular structures of transition metal complexes, see: Li et al. (2011); Wang et al. (2010); Yang et al. (2007). For related structures, see: Song et al. (2012).

Experimental top

Zn(NO3)2.6H2O (0.008 g, 0.025 mmol) and bpydbH2 (0.010 g, 0.025 mmol) were suspended in a mixed solution of DMF (4 ml) and H2O (0.5 ml). The mixture was heated in a 15 ml Teflon-lined stainless-steel autoclave at 90°C for 3 days. After it was cooled to room temperature slowly, colorless crystals were collected by filtration, washed with DMF and dried in air, with a yield of 59% based on bpydbH2.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 3/2-x, 1/2+y, 1/2-z; (ii) 1/2+x, 1/2-y, -1/2+z; (iii) 2-x, 1-y, -z.]
[Figure 2] Fig. 2. View of the layer structure in the title compound.
Poly[[diaquabis{µ-4-[6-(4-carboxyphenyl)-4,4'-bipyridin-2-yl]benzoato- κ2O:N4'}zinc] dimethylformamide tetrasolvate] top
Crystal data top
[Zn(C24H15N2O4)2(H2O)2]·4C3H7NOF(000) = 1240
Mr = 1184.57Dx = 1.388 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5607 reflections
a = 7.4744 (5) Åθ = 1.0–26.1°
b = 17.7122 (13) ŵ = 0.51 mm1
c = 21.4993 (15) ÅT = 293 K
β = 95.075 (1)°Block, colorless
V = 2835.1 (3) Å30.25 × 0.22 × 0.19 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5606 independent reflections
Radiation source: fine-focus sealed tube3804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.839, Tmax = 0.915k = 1621
15534 measured reflectionsl = 2621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.078P)2 + 1.0747P]
where P = (Fo2 + 2Fc2)/3
5606 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 0.40 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C24H15N2O4)2(H2O)2]·4C3H7NOV = 2835.1 (3) Å3
Mr = 1184.57Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4744 (5) ŵ = 0.51 mm1
b = 17.7122 (13) ÅT = 293 K
c = 21.4993 (15) Å0.25 × 0.22 × 0.19 mm
β = 95.075 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5606 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3804 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.915Rint = 0.044
15534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
5606 reflectionsΔρmin = 0.35 e Å3
385 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.50000.00000.03205 (18)
C10.6503 (5)0.73356 (19)0.63443 (16)0.0392 (8)
C20.6897 (4)0.66640 (18)0.59720 (14)0.0331 (7)
C30.6424 (4)0.59554 (18)0.61726 (15)0.0347 (8)
H30.59350.59010.65530.042*
C40.6676 (4)0.53241 (19)0.58068 (14)0.0318 (7)
H40.63550.48500.59450.038*
C50.7403 (4)0.53927 (17)0.52353 (13)0.0266 (6)
C60.7865 (4)0.61109 (18)0.50425 (15)0.0317 (7)
H60.83330.61700.46590.038*
C70.7642 (4)0.67359 (18)0.54074 (15)0.0336 (7)
H70.79930.72090.52750.040*
C80.7645 (4)0.47318 (18)0.48218 (14)0.0275 (7)
C90.7387 (4)0.39894 (17)0.50138 (14)0.0275 (7)
H90.70940.38910.54170.033*
C100.7572 (4)0.33962 (17)0.45977 (13)0.0264 (6)
C110.8034 (4)0.35839 (17)0.40001 (13)0.0288 (7)
H110.81620.32070.37060.035*
C120.8302 (4)0.43340 (17)0.38481 (13)0.0263 (6)
C130.8806 (4)0.45519 (17)0.32174 (13)0.0278 (7)
C140.8268 (4)0.41227 (18)0.26902 (14)0.0329 (7)
H140.75490.37000.27290.039*
C150.8791 (4)0.43189 (18)0.21099 (14)0.0326 (7)
H150.84200.40280.17620.039*
C160.9868 (4)0.49489 (17)0.20442 (14)0.0283 (7)
C171.0387 (4)0.53839 (18)0.25678 (14)0.0321 (7)
H171.11000.58090.25280.038*
C180.9856 (4)0.51921 (18)0.31450 (14)0.0324 (7)
H181.02020.54920.34900.039*
C191.0453 (5)0.51556 (17)0.14145 (15)0.0333 (8)
C200.7223 (4)0.26062 (17)0.47603 (13)0.0266 (6)
C210.7949 (4)0.19986 (18)0.44509 (14)0.0344 (8)
H210.87970.20850.41680.041*
C220.7410 (4)0.12758 (18)0.45651 (14)0.0348 (7)
H220.79230.08820.43570.042*
C230.5550 (4)0.16840 (18)0.52842 (14)0.0326 (7)
H230.47450.15780.55780.039*
C240.6034 (4)0.24235 (17)0.52010 (13)0.0292 (7)
H240.55680.28020.54390.035*
C250.5183 (11)0.7258 (3)0.2575 (3)0.128 (3)
H25A0.55270.74070.21730.192*
H25B0.59220.75150.28960.192*
H25C0.39470.73870.26060.192*
C260.5986 (7)0.6048 (3)0.2118 (2)0.0877 (17)
H26A0.62000.63970.17910.132*
H26B0.50670.56970.19700.132*
H26C0.70730.57780.22430.132*
C270.5016 (7)0.6134 (3)0.3160 (2)0.0726 (13)
H270.52610.56200.31970.087*
C280.8396 (6)0.1388 (3)0.6757 (2)0.0836 (16)
H28A0.80600.17520.70560.125*
H28B0.89620.09640.69710.125*
H28C0.73440.12220.65060.125*
C291.0019 (7)0.2524 (3)0.6437 (2)0.0759 (14)
H29A0.94340.27110.67860.114*
H29B0.95800.27920.60660.114*
H29C1.12910.25990.65130.114*
C301.0301 (5)0.1338 (2)0.59015 (18)0.0506 (10)
H300.99510.08350.58540.061*
N10.8119 (3)0.49033 (14)0.42511 (11)0.0278 (6)
N20.6181 (3)0.11067 (14)0.49621 (11)0.0313 (6)
N30.5410 (4)0.64597 (18)0.26498 (14)0.0501 (8)
N40.9645 (4)0.1733 (2)0.63570 (15)0.0520 (8)
O10.9686 (3)0.48245 (12)0.09483 (9)0.0361 (6)
O21.1689 (3)0.56380 (13)0.13980 (10)0.0432 (6)
O30.7257 (4)0.79565 (15)0.61423 (13)0.0569 (7)
H3A0.683 (6)0.8386 (13)0.624 (2)0.085*
O40.5576 (4)0.73346 (15)0.67822 (12)0.0544 (7)
O50.4357 (5)0.64314 (19)0.35968 (14)0.0839 (11)
O61.1334 (4)0.15890 (17)0.55402 (13)0.0590 (8)
O1W1.2630 (3)0.54461 (14)0.02156 (11)0.0416 (6)
H1A1.299 (5)0.5844 (14)0.0047 (18)0.062*
H1B1.278 (5)0.559 (2)0.0592 (8)0.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0519 (3)0.0240 (3)0.0219 (3)0.0006 (2)0.0128 (2)0.0000 (2)
C10.050 (2)0.033 (2)0.0353 (19)0.0030 (16)0.0075 (16)0.0027 (15)
C20.0362 (17)0.0336 (18)0.0293 (17)0.0046 (14)0.0013 (14)0.0048 (14)
C30.0421 (18)0.0354 (19)0.0278 (17)0.0034 (15)0.0100 (14)0.0005 (14)
C40.0413 (18)0.0293 (17)0.0254 (16)0.0013 (14)0.0066 (14)0.0021 (13)
C50.0270 (15)0.0278 (17)0.0248 (16)0.0007 (13)0.0013 (12)0.0009 (12)
C60.0361 (17)0.0308 (18)0.0291 (17)0.0009 (14)0.0081 (14)0.0001 (13)
C70.0378 (18)0.0275 (17)0.0360 (18)0.0006 (14)0.0060 (15)0.0006 (14)
C80.0272 (15)0.0292 (16)0.0266 (16)0.0020 (13)0.0054 (13)0.0014 (13)
C90.0295 (16)0.0309 (17)0.0228 (15)0.0004 (13)0.0057 (13)0.0016 (12)
C100.0298 (15)0.0284 (16)0.0214 (15)0.0015 (13)0.0046 (12)0.0016 (12)
C110.0371 (17)0.0282 (17)0.0217 (15)0.0012 (13)0.0063 (13)0.0005 (12)
C120.0317 (16)0.0287 (17)0.0187 (14)0.0002 (13)0.0039 (12)0.0017 (12)
C130.0338 (16)0.0274 (17)0.0229 (15)0.0020 (13)0.0074 (13)0.0034 (12)
C140.0452 (19)0.0290 (17)0.0261 (16)0.0059 (14)0.0118 (14)0.0008 (13)
C150.0480 (19)0.0296 (18)0.0211 (15)0.0010 (14)0.0075 (14)0.0008 (13)
C160.0390 (17)0.0244 (16)0.0226 (15)0.0038 (13)0.0102 (13)0.0026 (12)
C170.0437 (18)0.0272 (17)0.0263 (16)0.0049 (14)0.0081 (14)0.0032 (13)
C180.0448 (18)0.0322 (18)0.0209 (16)0.0038 (14)0.0065 (14)0.0012 (12)
C190.0482 (19)0.0265 (18)0.0268 (17)0.0052 (15)0.0115 (15)0.0043 (13)
C200.0333 (16)0.0241 (16)0.0229 (15)0.0006 (13)0.0054 (12)0.0001 (12)
C210.0439 (19)0.0327 (18)0.0286 (17)0.0002 (15)0.0144 (15)0.0001 (13)
C220.0481 (19)0.0285 (17)0.0296 (17)0.0029 (15)0.0132 (15)0.0025 (13)
C230.0461 (19)0.0294 (17)0.0240 (16)0.0000 (14)0.0124 (14)0.0014 (13)
C240.0406 (17)0.0264 (16)0.0213 (15)0.0009 (13)0.0063 (13)0.0003 (12)
C250.226 (8)0.052 (4)0.107 (5)0.005 (4)0.016 (5)0.023 (3)
C260.084 (3)0.127 (5)0.055 (3)0.038 (3)0.025 (3)0.002 (3)
C270.103 (4)0.055 (3)0.064 (3)0.011 (3)0.032 (3)0.009 (2)
C280.078 (3)0.116 (5)0.061 (3)0.027 (3)0.031 (3)0.016 (3)
C290.092 (3)0.065 (3)0.073 (3)0.005 (3)0.020 (3)0.018 (2)
C300.054 (2)0.051 (2)0.047 (2)0.0043 (19)0.0038 (19)0.0033 (18)
N10.0320 (13)0.0289 (15)0.0235 (13)0.0014 (11)0.0069 (11)0.0025 (10)
N20.0468 (16)0.0251 (14)0.0232 (13)0.0013 (12)0.0103 (12)0.0005 (10)
N30.059 (2)0.051 (2)0.0425 (18)0.0119 (16)0.0188 (15)0.0105 (15)
N40.0484 (18)0.063 (2)0.0460 (19)0.0022 (16)0.0137 (15)0.0078 (16)
O10.0617 (15)0.0290 (13)0.0190 (11)0.0026 (10)0.0118 (11)0.0013 (9)
O20.0644 (16)0.0364 (14)0.0311 (12)0.0112 (12)0.0170 (11)0.0010 (10)
O30.0751 (19)0.0377 (16)0.0612 (17)0.0008 (14)0.0256 (15)0.0095 (13)
O40.0735 (18)0.0479 (17)0.0439 (15)0.0008 (14)0.0177 (14)0.0080 (12)
O50.134 (3)0.071 (2)0.0527 (18)0.008 (2)0.044 (2)0.0085 (16)
O60.0602 (17)0.065 (2)0.0548 (17)0.0113 (14)0.0242 (14)0.0028 (14)
O1W0.0544 (15)0.0381 (15)0.0345 (13)0.0061 (12)0.0165 (12)0.0018 (11)
Geometric parameters (Å, º) top
Zn1—O12.096 (2)C18—H180.9300
Zn1—O1i2.096 (2)C19—O11.255 (4)
Zn1—O1W2.131 (3)C19—O21.261 (4)
Zn1—O1Wi2.131 (3)C20—C241.393 (4)
Zn1—N2ii2.154 (3)C20—C211.400 (4)
Zn1—N2iii2.154 (3)C21—C221.371 (4)
C1—O41.217 (4)C21—H210.9300
C1—O31.326 (4)C22—N21.342 (4)
C1—C21.478 (4)C22—H220.9300
C2—C31.383 (5)C23—N21.344 (4)
C2—C71.385 (4)C23—C241.375 (4)
C3—C41.389 (4)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—C51.392 (4)C25—N31.431 (6)
C4—H40.9300C25—H25A0.9600
C5—C61.391 (4)C25—H25B0.9600
C5—C81.490 (4)C25—H25C0.9600
C6—C71.375 (4)C26—N31.453 (5)
C6—H60.9300C26—H26A0.9600
C7—H70.9300C26—H26B0.9600
C8—N11.342 (4)C26—H26C0.9600
C8—C91.397 (4)C27—O51.217 (5)
C9—C101.395 (4)C27—N31.297 (5)
C9—H90.9300C27—H270.9300
C10—C111.400 (4)C28—N41.458 (5)
C10—C201.471 (4)C28—H28A0.9600
C11—C121.387 (4)C28—H28B0.9600
C11—H110.9300C28—H28C0.9600
C12—N11.344 (4)C29—N41.436 (5)
C12—C131.490 (4)C29—H29A0.9600
C13—C141.394 (4)C29—H29B0.9600
C13—C181.396 (4)C29—H29C0.9600
C14—C151.384 (4)C30—O61.226 (4)
C14—H140.9300C30—N41.333 (5)
C15—C161.390 (4)C30—H300.9300
C15—H150.9300N2—Zn1iv2.154 (3)
C16—C171.391 (4)O3—H3A0.86 (1)
C16—C191.504 (4)O1W—H1A0.85 (1)
C17—C181.378 (4)O1W—H1B0.85 (1)
C17—H170.9300
O1—Zn1—O1i180.0C17—C18—C13120.7 (3)
O1—Zn1—O1W91.38 (9)C17—C18—H18119.7
O1i—Zn1—O1W88.62 (9)C13—C18—H18119.7
O1—Zn1—O1Wi88.62 (9)O1—C19—O2125.3 (3)
O1i—Zn1—O1Wi91.38 (9)O1—C19—C16117.1 (3)
O1W—Zn1—O1Wi180.0O2—C19—C16117.5 (3)
O1—Zn1—N2ii89.05 (9)C24—C20—C21116.2 (3)
O1i—Zn1—N2ii90.95 (9)C24—C20—C10121.3 (3)
O1W—Zn1—N2ii88.43 (10)C21—C20—C10122.3 (3)
O1Wi—Zn1—N2ii91.57 (10)C22—C21—C20120.1 (3)
O1—Zn1—N2iii90.95 (9)C22—C21—H21120.0
O1i—Zn1—N2iii89.05 (9)C20—C21—H21120.0
O1W—Zn1—N2iii91.57 (10)N2—C22—C21123.4 (3)
O1Wi—Zn1—N2iii88.43 (10)N2—C22—H22118.3
N2ii—Zn1—N2iii180.0C21—C22—H22118.3
O4—C1—O3122.8 (3)N2—C23—C24123.3 (3)
O4—C1—C2124.9 (3)N2—C23—H23118.3
O3—C1—C2112.3 (3)C24—C23—H23118.3
C3—C2—C7119.4 (3)C23—C24—C20120.1 (3)
C3—C2—C1119.5 (3)C23—C24—H24120.0
C7—C2—C1121.0 (3)C20—C24—H24120.0
C2—C3—C4120.2 (3)N3—C25—H25A109.5
C2—C3—H3119.9N3—C25—H25B109.5
C4—C3—H3119.9H25A—C25—H25B109.5
C3—C4—C5120.8 (3)N3—C25—H25C109.5
C3—C4—H4119.6H25A—C25—H25C109.5
C5—C4—H4119.6H25B—C25—H25C109.5
C6—C5—C4118.0 (3)N3—C26—H26A109.5
C6—C5—C8119.6 (3)N3—C26—H26B109.5
C4—C5—C8122.4 (3)H26A—C26—H26B109.5
C7—C6—C5121.4 (3)N3—C26—H26C109.5
C7—C6—H6119.3H26A—C26—H26C109.5
C5—C6—H6119.3H26B—C26—H26C109.5
C6—C7—C2120.3 (3)O5—C27—N3126.7 (5)
C6—C7—H7119.9O5—C27—H27116.6
C2—C7—H7119.9N3—C27—H27116.6
N1—C8—C9122.5 (3)N4—C28—H28A109.5
N1—C8—C5115.0 (3)N4—C28—H28B109.5
C9—C8—C5122.4 (3)H28A—C28—H28B109.5
C10—C9—C8119.7 (3)N4—C28—H28C109.5
C10—C9—H9120.1H28A—C28—H28C109.5
C8—C9—H9120.1H28B—C28—H28C109.5
C9—C10—C11117.1 (3)N4—C29—H29A109.5
C9—C10—C20122.3 (3)N4—C29—H29B109.5
C11—C10—C20120.5 (3)H29A—C29—H29B109.5
C12—C11—C10119.8 (3)N4—C29—H29C109.5
C12—C11—H11120.1H29A—C29—H29C109.5
C10—C11—H11120.1H29B—C29—H29C109.5
N1—C12—C11122.8 (3)O6—C30—N4124.6 (4)
N1—C12—C13116.1 (3)O6—C30—H30117.7
C11—C12—C13121.1 (3)N4—C30—H30117.7
C14—C13—C18118.5 (3)C8—N1—C12118.0 (3)
C14—C13—C12121.4 (3)C22—N2—C23116.7 (3)
C18—C13—C12120.1 (3)C22—N2—Zn1iv122.2 (2)
C15—C14—C13120.8 (3)C23—N2—Zn1iv120.6 (2)
C15—C14—H14119.6C27—N3—C25120.0 (4)
C13—C14—H14119.6C27—N3—C26123.2 (4)
C14—C15—C16120.3 (3)C25—N3—C26116.6 (4)
C14—C15—H15119.8C30—N4—C29121.4 (4)
C16—C15—H15119.8C30—N4—C28120.6 (4)
C15—C16—C17119.0 (3)C29—N4—C28117.8 (4)
C15—C16—C19120.3 (3)C19—O1—Zn1128.7 (2)
C17—C16—C19120.7 (3)C1—O3—H3A119 (3)
C18—C17—C16120.7 (3)Zn1—O1W—H1A122 (3)
C18—C17—H17119.7Zn1—O1W—H1B111 (3)
C16—C17—H17119.7H1A—O1W—H1B98 (4)
O4—C1—C2—C39.9 (5)C19—C16—C17—C18179.7 (3)
O3—C1—C2—C3171.1 (3)C16—C17—C18—C130.8 (5)
O4—C1—C2—C7166.5 (3)C14—C13—C18—C171.7 (5)
O3—C1—C2—C712.6 (5)C12—C13—C18—C17177.6 (3)
C7—C2—C3—C40.7 (5)C15—C16—C19—O112.2 (4)
C1—C2—C3—C4175.7 (3)C17—C16—C19—O1167.6 (3)
C2—C3—C4—C50.1 (5)C15—C16—C19—O2166.8 (3)
C3—C4—C5—C60.1 (5)C17—C16—C19—O213.4 (5)
C3—C4—C5—C8178.2 (3)C9—C10—C20—C2426.9 (4)
C4—C5—C6—C71.1 (4)C11—C10—C20—C24150.4 (3)
C8—C5—C6—C7179.3 (3)C9—C10—C20—C21158.1 (3)
C5—C6—C7—C21.9 (5)C11—C10—C20—C2124.6 (4)
C3—C2—C7—C61.7 (5)C24—C20—C21—C223.3 (4)
C1—C2—C7—C6174.6 (3)C10—C20—C21—C22171.9 (3)
C6—C5—C8—N17.2 (4)C20—C21—C22—N20.7 (5)
C4—C5—C8—N1170.9 (3)N2—C23—C24—C200.6 (5)
C6—C5—C8—C9173.1 (3)C21—C20—C24—C233.9 (4)
C4—C5—C8—C98.8 (4)C10—C20—C24—C23171.3 (3)
N1—C8—C9—C101.9 (4)C9—C8—N1—C121.8 (4)
C5—C8—C9—C10177.7 (3)C5—C8—N1—C12177.9 (2)
C8—C9—C10—C110.7 (4)C11—C12—N1—C80.4 (4)
C8—C9—C10—C20176.6 (3)C13—C12—N1—C8179.2 (2)
C9—C10—C11—C120.5 (4)C21—C22—N2—C234.0 (5)
C20—C10—C11—C12177.9 (3)C21—C22—N2—Zn1iv168.0 (2)
C10—C11—C12—N10.7 (5)C24—C23—N2—C223.4 (5)
C10—C11—C12—C13179.6 (3)C24—C23—N2—Zn1iv168.8 (2)
N1—C12—C13—C14150.2 (3)O5—C27—N3—C254.1 (8)
C11—C12—C13—C1429.5 (4)O5—C27—N3—C26172.1 (5)
N1—C12—C13—C1830.6 (4)O6—C30—N4—C294.2 (6)
C11—C12—C13—C18149.7 (3)O6—C30—N4—C28178.8 (4)
C18—C13—C14—C151.2 (5)O2—C19—O1—Zn15.2 (5)
C12—C13—C14—C15178.1 (3)C16—C19—O1—Zn1175.85 (19)
C13—C14—C15—C160.1 (5)O1W—Zn1—O1—C1924.7 (3)
C14—C15—C16—C171.0 (5)O1Wi—Zn1—O1—C19155.3 (3)
C14—C15—C16—C19179.3 (3)N2ii—Zn1—O1—C19113.1 (3)
C15—C16—C17—C180.5 (5)N2iii—Zn1—O1—C1966.9 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O6v0.85 (1)1.93 (2)2.750 (4)164 (4)
O1W—H1B···O20.85 (1)1.98 (2)2.718 (3)145 (4)
O3—H3A···O2vi0.86 (1)1.77 (2)2.592 (3)161 (5)
Symmetry codes: (v) x+5/2, y+1/2, z+1/2; (vi) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C24H15N2O4)2(H2O)2]·4C3H7NO
Mr1184.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4744 (5), 17.7122 (13), 21.4993 (15)
β (°) 95.075 (1)
V3)2835.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.839, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
15534, 5606, 3804
Rint0.044
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 1.05
No. of reflections5606
No. of parameters385
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O6i0.85 (1)1.93 (2)2.750 (4)164 (4)
O1W—H1B···O20.85 (1)1.98 (2)2.718 (3)145 (4)
O3—H3A···O2ii0.86 (1)1.77 (2)2.592 (3)161 (5)
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial aid from the National Natural Science Foundation of China (grant No. 21001101).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H.-J., Gao, Z.-Q. & Gu, J.-Z. (2011). Acta Cryst. E67, m919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S.-Y., Song, X.-Z., Zhao, S.-N., Qin, C., Su, S.-Q., Zhu, M., Hao, Z.-M. & Zhang, H.-J. (2012). Dalton Trans. 41, 10412–10421.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534–540.  Web of Science CrossRef CAS Google Scholar
First citationYang, X.-P., Jones, R. A., Rivers, J. H. & Lai, R. P. (2007). Dalton Trans. pp. 3936–3942.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds