supplementary materials


im2404 scheme

Acta Cryst. (2012). E68, m1333    [ doi:10.1107/S1600536812041128 ]

Trans-bis(3-tert-butylpyridine-[kappa]N)bis(4-tert-butylpyridine-[kappa]N)bis(thiocyanato-[kappa]N)manganese(II)

T. Reinert, I. Jess and C. Näther

Abstract top

The asymmetric unit of the title compound [Mn(NCS)2(C9H13N)4] consists of one MnII cation located on a center of inversion, one thiocyanato anion, one 3-tert-butylpyridine ligand and one 4-tert-butylpyridine ligand in general positions. The tert-butyl group of the 4-tert-butylpyridine ligand is disordered over two sets of sites in a 0.60:0.40 ratio. The MnII cation is coordinated by six N atoms of four tert-butylpyridine ligands and two N-bonded thiocyanato anions within a slightly distorted octahedral coordination environment.

Comment top

The structure determination of the title compound was performed as part of a project on the synthesis of new coordination polymers based on transition metal thiocyanates and the investigations of their magnetic behaviour (Boeckmann et al., 2010; Boeckmann et al., 2011). Within this project we have reacted manganese(II)thiocyanate monohydrate with 4-tert-butylpyridine in water, which resulted in the formation of crystals of the title compound by accident. Apparently, the 4-tert-butylpyridine was contaminated with 3-tert-butylpyridine to a degree that allowed the formation of a few single crystals of the title compound. It was on the other hand not possible to obtain phase pure crystalline powder samples. In the crystal structure Mn atoms are surrounded by six N atoms of four tert-butylpyridine ligands and two N-bonded thiocyanato anions in mutual trans orientation in a slightly distorted octahedral geometry (Fig. 1). Mn···N distances range from 2.180 (3) Å to 2.337 (2) Å. It is also worth mentioning that so far no other compound containing 3-tert-butylpyridine has been reported in the CSD.

Related literature top

For related structures see: Nassimbeni et al. (1990) (4-tert-butylpyridine only). For the background to this work see: Boeckmann et al. (2010, 2011).

Experimental top

The title compound was obtained accidently during the reaction of 28.4 mg Mn(NCS)2 × H2O (0.15 mmol) with 44.4 µL 4-tert-butylpyridine (0.30 mmol), obtained from Sigma Aldrich, in 1.50 ml water at RT in a closed 3 mL snap cap vial. After three weeks colourless needles of the title compound were obtained.

Refinement top

H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) of the parent atom using a riding model with C—H = 0.95 Å for aromatic and 0.98 Å for methyl hydrogen atoms. The tert-butyl group of the 4-tert-butylpyridine ligand is disordered and was refined using a split model with fixed site occupation factors of 0.60 and 0.40. Distances between the methyl groups in the two disordered moieties were restrained to be equal.

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compund with displacement ellipsoids drawn at the 50% probability level (symmetry code: i = -x + 1, -y + 1, -z + 2). Disorder is shown as full and open bonds.
Trans-bis(3-tert-butylpyridine-κN)bis(4-tert-butylpyridine-κN)bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C9H13N)4]Z = 1
Mr = 711.92F(000) = 379
Triclinic, P1Dx = 1.165 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5921 (7) ÅCell parameters from 6934 reflections
b = 10.7253 (9) Åθ = 1.9–28.2°
c = 11.6286 (10) ŵ = 0.46 mm1
α = 66.870 (9)°T = 200 K
β = 68.011 (9)°Needle, colourless
γ = 76.359 (9)°0.13 × 0.09 × 0.05 mm
V = 1014.59 (17) Å3
Data collection top
STOE IPDS-1
diffractometer
3017 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
Phi scansh = 1111
7271 measured reflectionsk = 1312
3845 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.489P]
where P = (Fo2 + 2Fc2)/3
3845 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.92 e Å3
3 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Mn(NCS)2(C9H13N)4]γ = 76.359 (9)°
Mr = 711.92V = 1014.59 (17) Å3
Triclinic, P1Z = 1
a = 9.5921 (7) ÅMo Kα radiation
b = 10.7253 (9) ŵ = 0.46 mm1
c = 11.6286 (10) ÅT = 200 K
α = 66.870 (9)°0.13 × 0.09 × 0.05 mm
β = 68.011 (9)°
Data collection top
STOE IPDS-1
diffractometer
3017 reflections with I > 2σ(I)
7271 measured reflectionsRint = 0.037
3845 independent reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.92 e Å3
S = 1.03Δρmin = 0.88 e Å3
3845 reflectionsAbsolute structure: ?
241 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.50001.00000.03151 (17)
N10.6416 (3)0.6660 (2)0.9167 (2)0.0419 (5)
C10.6822 (3)0.7724 (2)0.8511 (2)0.0383 (6)
S10.73642 (11)0.92047 (9)0.75445 (13)0.0912 (4)
N110.3015 (2)0.65601 (19)0.94157 (18)0.0352 (5)
C110.1639 (3)0.6132 (3)0.9872 (2)0.0418 (6)
H110.15230.52001.03870.050*
C120.0397 (3)0.6983 (3)0.9625 (3)0.0481 (7)
H120.05550.66410.99500.058*
C130.0547 (3)0.8350 (3)0.8892 (3)0.0433 (6)
H130.03070.89500.87130.052*
C140.1938 (3)0.8843 (2)0.8421 (2)0.0367 (5)
C150.3133 (3)0.7888 (2)0.8708 (2)0.0370 (5)
H150.41030.81990.83800.044*
C160.2198 (3)1.0344 (3)0.7629 (3)0.0493 (7)
C170.3273 (5)1.0455 (4)0.6249 (3)0.0840 (13)
H17A0.34511.14110.57400.126*
H17B0.28251.01160.58110.126*
H17C0.42350.99100.63100.126*
C180.0701 (4)1.1229 (3)0.7584 (4)0.0711 (10)
H18A0.08961.21820.70830.107*
H18B0.00431.11490.84830.107*
H18C0.02061.09220.71560.107*
C190.2930 (4)1.0855 (3)0.8312 (4)0.0690 (10)
H19A0.30971.18150.78150.103*
H19B0.38991.03120.83460.103*
H19C0.22581.07650.92100.103*
N210.5965 (2)0.4594 (2)0.80246 (18)0.0363 (5)
C210.5945 (4)0.3378 (3)0.7974 (3)0.0516 (7)
H210.54770.26970.87690.062*
C220.6561 (4)0.3048 (3)0.6840 (3)0.0527 (8)
H220.65090.21600.68720.063*
C230.7253 (3)0.3997 (2)0.5657 (2)0.0349 (5)
C240.7275 (4)0.5254 (3)0.5714 (2)0.0540 (8)
H240.77350.59540.49340.065*
C250.6638 (4)0.5507 (3)0.6890 (2)0.0512 (7)
H250.66840.63830.68880.061*
C260.7927 (3)0.3670 (3)0.4375 (2)0.0448 (6)
C270.6680 (9)0.3097 (12)0.4244 (8)0.100 (3)0.60
H27A0.63340.23070.50300.150*0.60
H27B0.70870.28190.34620.150*0.60
H27C0.58280.38020.41560.150*0.60
C280.8526 (15)0.4830 (7)0.3205 (6)0.113 (4)0.60
H28A0.89320.45470.24260.170*0.60
H28B0.93330.51450.33140.170*0.60
H28C0.77140.55720.30930.170*0.60
C290.9189 (9)0.2494 (8)0.4536 (6)0.084 (2)0.60
H29A0.87890.17240.53240.125*0.60
H29B1.00160.27980.46280.125*0.60
H29C0.95670.22100.37590.125*0.60
C27'0.7316 (12)0.4873 (11)0.3296 (8)0.064 (3)0.40
H27D0.74870.57480.32770.096*0.40
H27E0.62310.48430.35130.096*0.40
H27F0.78520.47730.24310.096*0.40
C28'0.9667 (10)0.3858 (13)0.3845 (9)0.079 (3)0.40
H28D0.97950.47460.38280.118*0.40
H28E1.01050.38120.29520.118*0.40
H28F1.01810.31320.44260.118*0.40
C29'0.769 (2)0.2383 (12)0.4445 (10)0.116 (7)0.40
H29D0.81570.22850.35740.174*0.40
H29E0.65970.23190.47330.174*0.40
H29F0.81340.16570.50760.174*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0411 (3)0.0235 (3)0.0266 (3)0.0085 (2)0.0061 (2)0.00652 (18)
N10.0488 (13)0.0310 (11)0.0420 (11)0.0114 (9)0.0091 (9)0.0093 (9)
C10.0349 (14)0.0326 (13)0.0469 (14)0.0053 (10)0.0150 (11)0.0099 (11)
S10.0620 (6)0.0369 (4)0.1414 (10)0.0216 (4)0.0427 (6)0.0232 (5)
N110.0437 (12)0.0289 (10)0.0315 (10)0.0072 (9)0.0101 (8)0.0083 (8)
C110.0470 (15)0.0324 (12)0.0417 (13)0.0122 (11)0.0088 (11)0.0086 (10)
C120.0404 (15)0.0459 (15)0.0531 (15)0.0123 (12)0.0083 (12)0.0137 (12)
C130.0407 (15)0.0400 (14)0.0451 (14)0.0019 (11)0.0118 (11)0.0133 (11)
C140.0417 (14)0.0324 (12)0.0315 (11)0.0043 (10)0.0077 (10)0.0095 (9)
C150.0393 (14)0.0326 (12)0.0340 (12)0.0086 (10)0.0065 (10)0.0080 (9)
C160.0475 (16)0.0301 (13)0.0551 (16)0.0028 (11)0.0099 (13)0.0055 (11)
C170.109 (3)0.0498 (19)0.0509 (19)0.018 (2)0.0052 (19)0.0024 (15)
C180.066 (2)0.0398 (16)0.091 (2)0.0001 (15)0.0324 (19)0.0019 (16)
C190.062 (2)0.0373 (16)0.107 (3)0.0050 (14)0.0248 (19)0.0252 (17)
N210.0482 (13)0.0308 (10)0.0283 (9)0.0064 (9)0.0089 (8)0.0101 (8)
C210.078 (2)0.0334 (13)0.0322 (12)0.0183 (13)0.0019 (12)0.0103 (10)
C220.079 (2)0.0310 (13)0.0393 (14)0.0149 (13)0.0011 (13)0.0138 (11)
C230.0412 (14)0.0330 (12)0.0311 (11)0.0033 (10)0.0115 (10)0.0116 (9)
C240.086 (2)0.0397 (14)0.0294 (12)0.0248 (14)0.0041 (13)0.0078 (11)
C250.084 (2)0.0333 (13)0.0350 (13)0.0208 (13)0.0081 (13)0.0116 (11)
C260.0581 (17)0.0444 (14)0.0312 (12)0.0050 (12)0.0094 (11)0.0166 (11)
C270.078 (5)0.181 (10)0.091 (5)0.010 (5)0.023 (4)0.102 (7)
C280.221 (12)0.065 (4)0.027 (3)0.048 (6)0.011 (5)0.017 (3)
C290.082 (5)0.098 (5)0.063 (4)0.024 (4)0.012 (3)0.048 (4)
C27'0.079 (6)0.082 (6)0.036 (4)0.001 (5)0.020 (4)0.027 (4)
C28'0.056 (5)0.114 (8)0.057 (5)0.015 (5)0.006 (4)0.044 (6)
C29'0.205 (17)0.079 (7)0.052 (6)0.083 (10)0.040 (8)0.047 (6)
Geometric parameters (Å, º) top
Mn1—N12.180 (2)C21—C221.378 (4)
Mn1—N1i2.180 (2)C21—H210.9500
Mn1—N212.3081 (18)C22—C231.380 (3)
Mn1—N21i2.3081 (18)C22—H220.9500
Mn1—N11i2.337 (2)C23—C241.381 (4)
Mn1—N112.337 (2)C23—C261.531 (3)
N1—C11.157 (3)C24—C251.380 (4)
C1—S11.614 (3)C24—H240.9500
N11—C111.343 (3)C25—H250.9500
N11—C151.344 (3)C26—C29'1.419 (9)
C11—C121.368 (4)C26—C281.467 (7)
C11—H110.9500C26—C291.534 (7)
C12—C131.387 (4)C26—C271.546 (8)
C12—H120.9500C26—C28'1.580 (10)
C13—C141.385 (4)C26—C27'1.583 (9)
C13—H130.9500C27—H27A0.9800
C14—C151.393 (4)C27—H27B0.9800
C14—C161.535 (3)C27—H27C0.9800
C15—H150.9500C28—H28A0.9800
C16—C171.524 (4)C28—H28B0.9800
C16—C181.530 (4)C28—H28C0.9800
C16—C191.537 (5)C29—H29A0.9800
C17—H17A0.9800C29—H29B0.9800
C17—H17B0.9800C29—H29C0.9800
C17—H17C0.9800C27'—H27D0.9800
C18—H18A0.9800C27'—H27E0.9800
C18—H18B0.9800C27'—H27F0.9800
C18—H18C0.9800C28'—H28D0.9800
C19—H19A0.9800C28'—H28E0.9800
C19—H19B0.9800C28'—H28F0.9800
C19—H19C0.9800C29'—H29D0.9800
N21—C251.327 (3)C29'—H29E0.9800
N21—C211.333 (3)C29'—H29F0.9800
N1—Mn1—N1i180.000 (1)C23—C22—H22119.8
N1—Mn1—N2189.88 (8)C22—C23—C24115.3 (2)
N1i—Mn1—N2190.12 (8)C22—C23—C26121.8 (2)
N1—Mn1—N21i90.12 (8)C24—C23—C26122.9 (2)
N1i—Mn1—N21i89.88 (8)C25—C24—C23120.9 (2)
N21—Mn1—N21i180.000 (1)C25—C24—H24119.6
N1—Mn1—N11i90.23 (8)C23—C24—H24119.6
N1i—Mn1—N11i89.77 (8)N21—C25—C24123.6 (2)
N21—Mn1—N11i86.16 (7)N21—C25—H25118.2
N21i—Mn1—N11i93.84 (7)C24—C25—H25118.2
N1—Mn1—N1189.77 (8)C29'—C26—C28128.7 (5)
N1i—Mn1—N1190.23 (8)C29'—C26—C23116.5 (4)
N21—Mn1—N1193.84 (7)C28—C26—C23114.0 (3)
N21i—Mn1—N1186.16 (7)C29'—C26—C2961.8 (8)
N11i—Mn1—N11180.00 (10)C28—C26—C29109.6 (6)
C1—N1—Mn1157.6 (2)C23—C26—C29108.3 (3)
N1—C1—S1177.4 (2)C29'—C26—C2744.1 (8)
C11—N11—C15117.1 (2)C28—C26—C27111.9 (6)
C11—N11—Mn1118.51 (16)C23—C26—C27106.9 (3)
C15—N11—Mn1124.28 (17)C29—C26—C27105.7 (5)
N11—C11—C12122.7 (2)C29'—C26—C28'111.6 (8)
N11—C11—H11118.7C28—C26—C28'59.6 (6)
C12—C11—H11118.7C23—C26—C28'107.0 (4)
C11—C12—C13119.2 (3)C29—C26—C28'55.6 (5)
C11—C12—H12120.4C27—C26—C28'145.3 (5)
C13—C12—H12120.4C29'—C26—C27'111.2 (8)
C14—C13—C12120.2 (3)C28—C26—C27'42.7 (5)
C14—C13—H13119.9C23—C26—C27'107.4 (4)
C12—C13—H13119.9C29—C26—C27'142.3 (4)
C13—C14—C15116.1 (2)C27—C26—C27'74.8 (6)
C13—C14—C16123.6 (2)C28'—C26—C27'102.1 (6)
C15—C14—C16120.3 (2)C26—C27—H27A109.5
N11—C15—C14124.7 (2)C26—C27—H27B109.5
N11—C15—H15117.6H27A—C27—H27B109.5
C14—C15—H15117.6C26—C27—H27C109.5
C17—C16—C18111.4 (3)H27A—C27—H27C109.5
C17—C16—C14109.0 (2)H27B—C27—H27C109.5
C18—C16—C14111.0 (2)C26—C28—H28A109.5
C17—C16—C19108.8 (3)C26—C28—H28B109.5
C18—C16—C19107.7 (3)H28A—C28—H28B109.5
C14—C16—C19108.8 (2)C26—C28—H28C109.5
C16—C17—H17A109.5H28A—C28—H28C109.5
C16—C17—H17B109.5H28B—C28—H28C109.5
H17A—C17—H17B109.5C26—C29—H29A109.5
C16—C17—H17C109.5C26—C29—H29B109.5
H17A—C17—H17C109.5H29A—C29—H29B109.5
H17B—C17—H17C109.5C26—C29—H29C109.5
C16—C18—H18A109.5H29A—C29—H29C109.5
C16—C18—H18B109.5H29B—C29—H29C109.5
H18A—C18—H18B109.5C26—C27'—H27D109.5
C16—C18—H18C109.5C26—C27'—H27E109.5
H18A—C18—H18C109.5H27D—C27'—H27E109.5
H18B—C18—H18C109.5C26—C27'—H27F109.5
C16—C19—H19A109.5H27D—C27'—H27F109.5
C16—C19—H19B109.5H27E—C27'—H27F109.5
H19A—C19—H19B109.5C26—C28'—H28D109.5
C16—C19—H19C109.5C26—C28'—H28E109.5
H19A—C19—H19C109.5H28D—C28'—H28E109.5
H19B—C19—H19C109.5C26—C28'—H28F109.5
C25—N21—C21115.7 (2)H28D—C28'—H28F109.5
C25—N21—Mn1123.21 (16)H28E—C28'—H28F109.5
C21—N21—Mn1121.01 (15)C26—C29'—H29D109.5
N21—C21—C22124.0 (2)C26—C29'—H29E109.5
N21—C21—H21118.0H29D—C29'—H29E109.5
C22—C21—H21118.0C26—C29'—H29F109.5
C21—C22—C23120.5 (2)H29D—C29'—H29F109.5
C21—C22—H22119.8H29E—C29'—H29F109.5
Symmetry code: (i) x+1, y+1, z+2.
Acknowledgements top

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for the opportunity to use of his experimental facility.

references
References top

Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026.

Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Nassimbeni, L. R., Niven, M. L. & Taylor, M. W. (1990). Acta Cryst. B46, 354–361.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.