[Journal logo]

Volume 68 
Part 11 
Page o3195  
November 2012  

Received 1 October 2012
Accepted 17 October 2012
Online 24 October 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.038
wR = 0.115
Data-to-parameter ratio = 20.6
Details
Open access

2-Amino-5-methylpyridinium 3-chlorobenzoate

The 3-chlorobenzoate anion of the title salt, C6H9N2+·C7H4ClO2-, is nearly planar with a dihedral angle of 2.44 (13)° between the benzene ring and the carboxylate group. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxylate O atoms of the anion via a pair of N-H...O hydrogen bonds with an R22(8) ring motif, forming an approximately planar ion pair with a dihedral angle of 7.92 (5)° between the pyridinium and benzene rings. The ion pairs are further connected via N-H...O and C-H...O hydrogen bonds, forming a two-dimensional network parallel to the bc plane.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of hydrogen bonding, see: Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction of Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). In Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4ClO2-

  • Mr = 264.70

  • Monoclinic, P 21 /c

  • a = 9.0318 (11) Å

  • b = 11.6590 (14) Å

  • c = 12.1166 (15) Å

  • [beta] = 101.521 (2)°

  • V = 1250.2 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.30 mm-1

  • T = 100 K

  • 0.53 × 0.31 × 0.22 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.936

  • 13594 measured reflections

  • 3629 independent reflections

  • 3201 reflections with I > 2[sigma](I)

  • Rint = 0.031

Refinement
  • R[F2 > 2[sigma](F2)] = 0.038

  • wR(F2) = 0.115

  • S = 1.06

  • 3629 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.48 e Å-3

  • [Delta][rho]min = -0.33 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1N1...O1 1.00 (2) 1.68 (2) 2.6716 (13) 174 (2)
N2-H1N2...O2 0.946 (19) 1.820 (19) 2.7618 (15) 173.0 (19)
N2-H2N2...O1i 0.90 (2) 1.95 (2) 2.8526 (14) 174.0 (17)
C2-H2A...O2ii 0.95 2.52 3.2104 (15) 130
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5201 ).


Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS-USM fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.  [CrossRef] [ChemPort] [ISI] [details]
Jeffrey, G. A. (1997). In An Introduction of Hydrogen Bonding. Oxford University Press.
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.
Scheiner, S. (1997). In Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]


Acta Cryst (2012). E68, o3195  [ doi:10.1107/S1600536812043231 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.