organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3216-o3217

3,5-Bis(4-fluoro­phen­yl)-1-(4-nitro­phen­yl)-4,5-di­hydro-1H-pyrazole

aMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 17 October 2012; accepted 22 October 2012; online 27 October 2012)

In the title compound, C21H15F2N3O2, a pyrazole derivative bearing three aromatic substituents, the central five-membered heterocyclic ring makes dihedral angles of 1.77 (14), 3.68 (13) and 72.15 (14)° with the three benzene rings. In the crystal, C—H⋯O and C—H⋯F inter­actions connect the mol­ecules into double layers parallel to the bc plane.

Related literature

For general information about the pharmacological properties and medical applications of pyrazole derivatives, see: Kumar et al. (2009[Kumar, S., Bawa, S., Drabu, S., Kumar, R. & Gupta, H. (2009). Recent Pat. Anti-infect. Drug Discov. 4, 154-163.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214-224.]); Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012-2022.]). For the crystal structures of other pyrazole derivatives, see: Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]); Jasinski et al. (2012[Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108-1115.]). For the puckering analysis of cyclic motifs, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15F2N3O2

  • Mr = 379.36

  • Monoclinic, P 21 /c

  • a = 13.2884 (13) Å

  • b = 12.7364 (10) Å

  • c = 11.4656 (9) Å

  • β = 115.324 (3)°

  • V = 1754.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.57 × 0.33 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.971

  • 15973 measured reflections

  • 4301 independent reflections

  • 3066 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.221

  • S = 1.06

  • 4301 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.41 3.305 (3) 157
C16—H16⋯F2ii 0.95 2.55 3.427 (3) 154
C26—H26⋯F1iii 0.95 2.56 3.494 (3) 169
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives are well known for their broad spectrum of pharmacological properties and have been found – among others – to exhibit antimicrobial, antioxidant, antiamoebic, anti-inflammatory, analgesic, antidepressant and anticancer activity (Kumar et al., 2009; Sarojini et al., 2010; Samshuddin et al., 2012). Because of these various interesting fields of application as well as their fairly assessable path of synthesis, the pyrazoline ring became a center of attraction for organic chemists. The crystal structures of some pyrazolines derived from 4,4'-difluoro chalcone have been reported (Baktır et al., 2011; Jasinski et al., 2012). Fuelled by our ongoing interest in pharmacological active compounds, the title compound was synthesized.

Three phenyl-derived substituents are bonded to a central 4,5-dihydro-1H-pyrazole moiety. The least-squares planes defined by the C11–C16, C31–C36 and C21–C26 benzene rings enclose dihedral angles of 1.77 (14), 3.68 (13) and 72.15 (14)°, respectively, with the least-squares plane defined by the intracyclic atoms of the central five-membered heterocycle with the largest angle formed by one of the two para-fluoro phenyl groups. A conformational analysis of the 4,5-dihydro-1H-pyrazole moiety is precluded due to its low puckering amplitude (Cremer & Pople, 1975). The nitro group is slightly tilted out of plane of the least-square plane defined by the carbon atoms of the aromatic moiety it is bonded to, the corresponding O2—N3—C34—C35 torsion angle being 17.0 (3)° (Fig. 1).

In the crystal, C—H···O and C—H···F contacts can be observed whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating in them. These are exclusively supported by hydrogen atoms bonded to para-fluoro phenyl groups. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C—H···O contacts is C(12) on the unary level, while the C—H···F contacts necessitate a C(11)C(11) descriptor on the same level. In total, the molecules are connected to double layers parallel to the bc plane. The shortest intercentroid distance between two aromatic systems was measured at 4.8923 (17) Å and is observed between the two different fluorinated phenyl groups in neighbouring molecules. Taking into account the centroid of the 4,5-dihydro-1H-pyrazole moiety as well, the shortest intercentroid distance is found at 3.5918 (15) Å between this pyrazole unit and the nitrated phenyl group (Fig. 2). The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For general information about the pharmacological properties and medical applications of pyrazole derivatives, see: Kumar et al. (2009); Sarojini et al. (2010); Samshuddin et al. (2012). For the crystal structures of other pyrazole derivatives, see: Baktır et al. (2011); Jasinski et al. (2012). For the puckering analysis of cyclic motifs, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

A mixture of 4,4'-difluoro chalcone (2.68 g, 0.01 mol) and 4-nitrophenyl hydrazine (1.53 g, 0.01 mol) was refluxed in glacial acetic acid (50 ml) for 6 h. The reaction mixture was cooled and pourred into ice-cold water (50 ml). The precipitate was collected by filtration and purified by recrystallization from ethanol (yield: 74%). Yellow blocks, suitable for the X-ray diffraction study, were grown from a DMF solution by slow evaporation at room temperature.

Refinement top

H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for the methylene group and C—H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. For clarity, only an arbitrary selection of intermolecular contacts is shown. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x, -y - 1/2, z - 1/2].
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
3,5-Bis(4-fluorophenyl)-1-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole top
Crystal data top
C21H15F2N3O2F(000) = 784
Mr = 379.36Dx = 1.437 Mg m3
Monoclinic, P21/cMelting point: 443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.2884 (13) ÅCell parameters from 6702 reflections
b = 12.7364 (10) Åθ = 2.3–27.9°
c = 11.4656 (9) ŵ = 0.11 mm1
β = 115.324 (3)°T = 200 K
V = 1754.0 (3) Å3Block, orange
Z = 40.57 × 0.33 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
4301 independent reflections
Radiation source: fine-focus sealed tube3066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.692, Tmax = 0.971k = 1516
15973 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1331P)2 + 0.5062P]
where P = (Fo2 + 2Fc2)/3
4301 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C21H15F2N3O2V = 1754.0 (3) Å3
Mr = 379.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2884 (13) ŵ = 0.11 mm1
b = 12.7364 (10) ÅT = 200 K
c = 11.4656 (9) Å0.57 × 0.33 × 0.27 mm
β = 115.324 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4301 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3066 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.971Rint = 0.052
15973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
4301 reflectionsΔρmin = 0.39 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11689 (15)0.42461 (13)0.04507 (17)0.0638 (5)
F20.01460 (13)0.43563 (13)0.35591 (18)0.0611 (5)
O10.61528 (16)0.02802 (17)1.00769 (16)0.0536 (5)
O20.57223 (18)0.19339 (18)0.98021 (18)0.0663 (6)
N10.30617 (15)0.05788 (13)0.36124 (16)0.0305 (4)
N20.32892 (15)0.04326 (14)0.40815 (16)0.0327 (4)
N30.56940 (16)0.10368 (18)0.93869 (18)0.0428 (5)
C10.25491 (17)0.05414 (16)0.23711 (18)0.0297 (4)
C20.2351 (2)0.05569 (17)0.1837 (2)0.0368 (5)
H2A0.15450.07170.13960.044*
H2B0.26880.06630.12250.044*
C30.29364 (18)0.12390 (17)0.30617 (19)0.0322 (5)
H30.36070.15830.30470.039*
C110.21963 (17)0.15094 (17)0.16168 (18)0.0298 (4)
C120.24429 (19)0.24829 (18)0.2240 (2)0.0354 (5)
H120.28490.25110.31510.042*
C130.2103 (2)0.34014 (19)0.1545 (3)0.0426 (5)
H130.22700.40630.19680.051*
C140.1515 (2)0.3339 (2)0.0222 (2)0.0431 (6)
C150.1269 (2)0.2404 (2)0.0425 (2)0.0437 (6)
H150.08710.23850.13380.052*
C160.16125 (19)0.14838 (19)0.0279 (2)0.0375 (5)
H160.14480.08270.01560.045*
C210.21828 (17)0.20653 (17)0.32160 (18)0.0303 (4)
C220.2177 (2)0.30641 (19)0.2750 (3)0.0495 (6)
H220.26530.32250.23500.059*
C230.1486 (3)0.3840 (2)0.2857 (3)0.0570 (7)
H230.14790.45250.25280.068*
C240.08164 (19)0.35925 (19)0.3447 (3)0.0422 (6)
C250.0790 (2)0.2616 (2)0.3912 (2)0.0431 (6)
H250.03080.24640.43090.052*
C260.14779 (19)0.18489 (19)0.3796 (2)0.0390 (5)
H260.14680.11630.41170.047*
C310.39135 (16)0.05788 (16)0.53770 (18)0.0289 (4)
C320.42036 (18)0.02827 (17)0.62266 (19)0.0321 (4)
H320.39950.09720.58960.039*
C330.47889 (18)0.01300 (18)0.7534 (2)0.0344 (5)
H330.49830.07110.81080.041*
C340.50939 (17)0.08796 (18)0.80077 (19)0.0331 (5)
C350.48391 (18)0.17349 (18)0.7191 (2)0.0348 (5)
H350.50630.24190.75340.042*
C360.42597 (18)0.15954 (18)0.5877 (2)0.0346 (5)
H360.40950.21810.53110.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0698 (11)0.0542 (10)0.0696 (11)0.0138 (8)0.0319 (9)0.0309 (8)
F20.0490 (9)0.0516 (10)0.0853 (12)0.0049 (7)0.0312 (9)0.0195 (8)
O10.0509 (10)0.0741 (14)0.0274 (8)0.0024 (9)0.0089 (7)0.0019 (8)
O20.0681 (13)0.0731 (14)0.0428 (10)0.0056 (11)0.0096 (9)0.0301 (10)
N10.0346 (9)0.0314 (9)0.0248 (8)0.0006 (7)0.0119 (7)0.0021 (7)
N20.0425 (10)0.0293 (9)0.0234 (8)0.0018 (7)0.0113 (7)0.0009 (7)
N30.0354 (10)0.0617 (14)0.0292 (9)0.0014 (9)0.0117 (8)0.0124 (9)
C10.0316 (10)0.0352 (11)0.0239 (9)0.0015 (8)0.0133 (8)0.0014 (8)
C20.0474 (13)0.0379 (12)0.0248 (9)0.0063 (10)0.0151 (9)0.0025 (8)
C30.0356 (11)0.0350 (11)0.0267 (9)0.0027 (8)0.0139 (8)0.0035 (8)
C110.0301 (10)0.0366 (11)0.0233 (9)0.0008 (8)0.0121 (8)0.0025 (8)
C120.0364 (11)0.0373 (11)0.0308 (10)0.0015 (9)0.0127 (9)0.0014 (9)
C130.0449 (13)0.0362 (12)0.0505 (14)0.0009 (10)0.0240 (11)0.0002 (10)
C140.0418 (13)0.0435 (13)0.0490 (13)0.0072 (10)0.0243 (11)0.0179 (11)
C150.0465 (14)0.0559 (15)0.0288 (10)0.0052 (11)0.0162 (10)0.0114 (10)
C160.0428 (12)0.0456 (13)0.0233 (9)0.0011 (10)0.0132 (9)0.0011 (9)
C210.0319 (10)0.0334 (11)0.0261 (9)0.0009 (8)0.0128 (8)0.0010 (8)
C220.0518 (15)0.0375 (13)0.0737 (18)0.0024 (11)0.0408 (14)0.0105 (12)
C230.0619 (17)0.0300 (13)0.091 (2)0.0033 (12)0.0439 (16)0.0080 (13)
C240.0311 (11)0.0396 (13)0.0511 (14)0.0004 (9)0.0132 (10)0.0151 (10)
C250.0375 (12)0.0548 (15)0.0420 (12)0.0000 (10)0.0217 (10)0.0030 (11)
C260.0415 (12)0.0412 (12)0.0392 (11)0.0023 (10)0.0221 (10)0.0042 (9)
C310.0287 (10)0.0344 (11)0.0251 (9)0.0009 (8)0.0128 (8)0.0020 (8)
C320.0363 (11)0.0330 (11)0.0255 (9)0.0020 (8)0.0118 (8)0.0023 (8)
C330.0369 (11)0.0404 (12)0.0256 (9)0.0004 (9)0.0132 (8)0.0004 (8)
C340.0273 (10)0.0460 (12)0.0244 (9)0.0007 (9)0.0094 (8)0.0073 (9)
C350.0317 (11)0.0355 (11)0.0376 (11)0.0023 (9)0.0151 (9)0.0097 (9)
C360.0332 (11)0.0354 (11)0.0355 (11)0.0003 (9)0.0150 (9)0.0007 (9)
Geometric parameters (Å, º) top
F1—C141.356 (3)C15—C161.385 (3)
F2—C241.362 (3)C15—H150.9500
O1—N31.230 (3)C16—H160.9500
O2—N31.232 (3)C21—C221.378 (3)
N1—C11.289 (2)C21—C261.388 (3)
N1—N21.379 (2)C22—C231.389 (4)
N2—C311.369 (2)C22—H220.9500
N2—C31.474 (3)C23—C241.364 (4)
N3—C341.448 (3)C23—H230.9500
C1—C111.463 (3)C24—C251.360 (4)
C1—C21.504 (3)C25—C261.383 (3)
C2—C31.548 (3)C25—H250.9500
C2—H2A0.9900C26—H260.9500
C2—H2B0.9900C31—C321.407 (3)
C3—C211.514 (3)C31—C361.411 (3)
C3—H31.0000C32—C331.376 (3)
C11—C161.392 (3)C32—H320.9500
C11—C121.398 (3)C33—C341.387 (3)
C12—C131.378 (3)C33—H330.9500
C12—H120.9500C34—C351.381 (3)
C13—C141.380 (4)C35—C361.379 (3)
C13—H130.9500C35—H350.9500
C14—C151.367 (4)C36—H360.9500
C1—N1—N2108.68 (16)C15—C16—H16119.6
C31—N2—N1118.70 (16)C11—C16—H16119.6
C31—N2—C3127.24 (18)C22—C21—C26118.4 (2)
N1—N2—C3113.53 (16)C22—C21—C3119.40 (18)
O1—N3—O2123.6 (2)C26—C21—C3122.22 (19)
O1—N3—C34118.9 (2)C21—C22—C23121.1 (2)
O2—N3—C34117.5 (2)C21—C22—H22119.4
N1—C1—C11120.38 (18)C23—C22—H22119.4
N1—C1—C2113.68 (18)C24—C23—C22118.4 (2)
C11—C1—C2125.93 (17)C24—C23—H23120.8
C1—C2—C3102.70 (16)C22—C23—H23120.8
C1—C2—H2A111.2C25—C24—F2119.2 (2)
C3—C2—H2A111.2C25—C24—C23122.5 (2)
C1—C2—H2B111.2F2—C24—C23118.3 (2)
C3—C2—H2B111.2C24—C25—C26118.6 (2)
H2A—C2—H2B109.1C24—C25—H25120.7
N2—C3—C21113.17 (16)C26—C25—H25120.7
N2—C3—C2101.21 (16)C25—C26—C21121.0 (2)
C21—C3—C2113.27 (18)C25—C26—H26119.5
N2—C3—H3109.6C21—C26—H26119.5
C21—C3—H3109.6N2—C31—C32120.28 (18)
C2—C3—H3109.6N2—C31—C36120.42 (19)
C16—C11—C12118.82 (19)C32—C31—C36119.30 (19)
C16—C11—C1121.22 (19)C33—C32—C31120.3 (2)
C12—C11—C1119.97 (18)C33—C32—H32119.9
C13—C12—C11120.7 (2)C31—C32—H32119.9
C13—C12—H12119.7C32—C33—C34119.5 (2)
C11—C12—H12119.7C32—C33—H33120.3
C12—C13—C14118.5 (2)C34—C33—H33120.3
C12—C13—H13120.7C35—C34—C33121.33 (19)
C14—C13—H13120.7C35—C34—N3119.5 (2)
F1—C14—C15119.3 (2)C33—C34—N3119.2 (2)
F1—C14—C13118.1 (2)C36—C35—C34120.0 (2)
C15—C14—C13122.6 (2)C36—C35—H35120.0
C14—C15—C16118.6 (2)C34—C35—H35120.0
C14—C15—H15120.7C35—C36—C31119.6 (2)
C16—C15—H15120.7C35—C36—H36120.2
C15—C16—C11120.8 (2)C31—C36—H36120.2
C1—N1—N2—C31174.73 (17)C2—C3—C21—C2685.0 (2)
C1—N1—N2—C32.4 (2)C26—C21—C22—C230.1 (4)
N2—N1—C1—C11179.48 (17)C3—C21—C22—C23179.1 (3)
N2—N1—C1—C20.7 (2)C21—C22—C23—C240.6 (5)
N1—C1—C2—C33.2 (2)C22—C23—C24—C251.0 (4)
C11—C1—C2—C3178.07 (19)C22—C23—C24—F2179.5 (3)
C31—N2—C3—C2162.7 (3)F2—C24—C25—C26179.8 (2)
N1—N2—C3—C21125.73 (19)C23—C24—C25—C260.8 (4)
C31—N2—C3—C2175.7 (2)C24—C25—C26—C210.0 (4)
N1—N2—C3—C24.2 (2)C22—C21—C26—C250.4 (3)
C1—C2—C3—N24.1 (2)C3—C21—C26—C25179.3 (2)
C1—C2—C3—C21125.55 (18)N1—N2—C31—C327.3 (3)
N1—C1—C11—C16178.05 (19)C3—N2—C31—C32178.48 (19)
C2—C1—C11—C160.6 (3)N1—N2—C31—C36173.54 (18)
N1—C1—C11—C121.8 (3)C3—N2—C31—C362.4 (3)
C2—C1—C11—C12179.6 (2)N2—C31—C32—C33177.13 (19)
C16—C11—C12—C130.8 (3)C36—C31—C32—C332.0 (3)
C1—C11—C12—C13179.1 (2)C31—C32—C33—C340.2 (3)
C11—C12—C13—C140.0 (3)C32—C33—C34—C351.2 (3)
C12—C13—C14—F1179.0 (2)C32—C33—C34—N3178.99 (18)
C12—C13—C14—C150.8 (4)O1—N3—C34—C35162.4 (2)
F1—C14—C15—C16178.9 (2)O2—N3—C34—C3517.0 (3)
C13—C14—C15—C160.9 (4)O1—N3—C34—C3317.4 (3)
C14—C15—C16—C110.1 (3)O2—N3—C34—C33163.2 (2)
C12—C11—C16—C150.7 (3)C33—C34—C35—C360.7 (3)
C1—C11—C16—C15179.1 (2)N3—C34—C35—C36179.45 (18)
N2—C3—C21—C22151.6 (2)C34—C35—C36—C311.1 (3)
C2—C3—C21—C2294.0 (3)N2—C31—C36—C35176.68 (18)
N2—C3—C21—C2629.5 (3)C32—C31—C36—C352.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.413.305 (3)157
C16—H16···F2ii0.952.553.427 (3)154
C26—H26···F1iii0.952.563.494 (3)169
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H15F2N3O2
Mr379.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)13.2884 (13), 12.7364 (10), 11.4656 (9)
β (°) 115.324 (3)
V3)1754.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.57 × 0.33 × 0.27
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.692, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
15973, 4301, 3066
Rint0.052
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.221, 1.06
No. of reflections4301
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.413.305 (3)157
C16—H16···F2ii0.952.553.427 (3)154
C26—H26···F1iii0.952.563.494 (3)169
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108–1115.  CrossRef CAS Google Scholar
First citationKumar, S., Bawa, S., Drabu, S., Kumar, R. & Gupta, H. (2009). Recent Pat. Anti-infect. Drug Discov. 4, 154–163.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3216-o3217
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds