supplementary materials


jj2152 scheme

Acta Cryst. (2012). E68, o3119    [ doi:10.1107/S1600536812041943 ]

3-(6-Aminopyridinium-3-yl)benzoate monohydrate

Z.-Y. Yuan, J. Zhao and Z. Peng

Abstract top

The title compound, C12H10N2O2·H2O, crystallizes as a zwitterion in which the pyridine N atom is protonated and the carboxyl OH group is deprotonated. The benzene and pyridinium rings are inclined at a dihedral angle of 54.93 (1)°. In the crystal, O-H...O and N-H...O hydrogen bonds link the molecules into a three-dimensional supramolecular network.

Comment top

Multidentate bridging ligands containing functional groups such as the familiar pyridyl and/or carboxylate groups have proven to be among the most important types of organic ligands for the design and construction of coordination polymers exhibiting remarkable polymeric structural motifs due to their rich coordination modes (Tang et al., 2011; Zhong et al., 2008). We attempted to synthesize a ZnII complex with the ligand in hydrothermal synthesis conditions. However the title compound was obtained, its structure is reported here.

The asymmetric unit of the title compound, C12H10N2O2. H2O is composed of one 3-(6-Amino-pyridinium-3-yl)-benzoate acid molecule and one lattice water molecule. The dihedral angle between the mean planes of the benzene and pyridinium rings is 54.93 (1)°. The deprotonated carboxylate COO(O1—C1—O2) group is slightly twisted from the benzene ring by an angle of 11.61 (7)° between their mean planes (Fig. 1). Intermolecular O—H···O and N—H···O hydrogen-bonding interactions (Table 1) link adjacent molecules into a three-dimensional supramolecular network (Fig. 2).

Related literature top

For the use of pyridinecarboxylic acid in coordination chemistry and for related structures, see: Tang et al. (2011); Zhong et al. (2008).

Experimental top

A mixture of 3-(6-Amino-pyridin-3-yl)-benzoic acid (0.0214 g, 0.1 mmol), Zn(CH3COO)2.2H2O (0.0219 g, 0.1 mmol) and water (8 ml) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 393 K for 2 days, and then cooled to room temperature at 5 K h-1 to obtain colorless prism crystals suitable for X-ray analysis.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and allowed to ride on their parent atoms, with Uiso(H) value equal to 1.2Ueq(C or N). The H atoms bonded to water O atoms were included in calculated positions and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker,1999); data reduction: SAINT (Bruker,1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom-numbering scheme showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. The three-dimensional supramolecular network formed by N—H···O and O—H···O hydrogen-bonding interactions. H atoms not involved in hydrogen bonding have been removed for clarity.
3-(6-Aminopyridinium-3-yl)benzoate monohydrate top
Crystal data top
C12H10N2O2·H2OF(000) = 488
Mr = 232.24Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1519 reflections
a = 7.1956 (18) Åθ = 3.1–25.0°
b = 13.091 (9) ŵ = 0.10 mm1
c = 11.987 (10) ÅT = 296 K
β = 101.44 (3)°Prism, colourless
V = 1106.8 (12) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1942 independent reflections
Radiation source: fine-focus sealed tube1344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
φ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.980, Tmax = 0.983k = 1515
9294 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0884P)2 + 0.8024P]
where P = (Fo2 + 2Fc2)/3
1942 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H10N2O2·H2OV = 1106.8 (12) Å3
Mr = 232.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1956 (18) ŵ = 0.10 mm1
b = 13.091 (9) ÅT = 296 K
c = 11.987 (10) Å0.20 × 0.18 × 0.17 mm
β = 101.44 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1942 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1344 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.095
9294 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.215Δρmax = 0.30 e Å3
S = 1.09Δρmin = 0.21 e Å3
1942 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6726 (5)0.2413 (3)0.2146 (3)0.0454 (10)
C20.4946 (5)0.1869 (3)0.1993 (3)0.0408 (9)
C30.4506 (5)0.1783 (3)0.0921 (3)0.0418 (9)
H3A0.53600.20260.02910.050*
C40.2823 (5)0.1342 (3)0.0766 (3)0.0422 (9)
C50.1555 (6)0.0988 (3)0.1711 (4)0.0518 (11)
H5A0.04070.07040.16260.062*
C60.1995 (6)0.1055 (3)0.2783 (4)0.0546 (11)
H6A0.11460.08050.34100.066*
C70.3682 (5)0.1489 (3)0.2930 (3)0.0475 (10)
H7A0.39690.15260.36520.057*
C80.2383 (5)0.1250 (3)0.0394 (3)0.0414 (9)
C90.0750 (5)0.1644 (3)0.0640 (3)0.0461 (10)
H9A0.01150.19640.00670.055*
C100.1542 (5)0.1128 (3)0.2573 (3)0.0442 (10)
C110.3236 (5)0.0713 (3)0.2355 (3)0.0482 (10)
H11A0.40800.03890.29360.058*
C120.3642 (5)0.0783 (3)0.1300 (3)0.0478 (10)
H12A0.47790.05170.11720.057*
N10.0361 (4)0.1579 (2)0.1700 (3)0.0454 (8)
H1A0.06810.18370.18190.054*
N20.1056 (5)0.1100 (3)0.3583 (3)0.0558 (10)
H2A0.00030.13660.36710.067*
H2B0.17950.08140.41490.067*
O10.7197 (4)0.2360 (2)0.3109 (2)0.0626 (9)
O1W0.2996 (5)0.0676 (3)0.4736 (3)0.0984 (13)
H1WA0.31980.09950.53720.148*
H1WB0.24330.11200.42370.148*
O20.7649 (4)0.2900 (2)0.1316 (2)0.0611 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.050 (2)0.048 (2)0.0020 (18)0.0135 (18)0.007 (2)
C20.0366 (19)0.038 (2)0.052 (2)0.0037 (16)0.0172 (17)0.0019 (17)
C30.039 (2)0.043 (2)0.046 (2)0.0025 (17)0.0136 (17)0.0019 (17)
C40.043 (2)0.034 (2)0.055 (2)0.0038 (16)0.0223 (18)0.0001 (17)
C50.045 (2)0.046 (2)0.068 (3)0.0120 (19)0.019 (2)0.007 (2)
C60.051 (3)0.055 (3)0.055 (3)0.008 (2)0.004 (2)0.007 (2)
C70.047 (2)0.045 (2)0.053 (2)0.0009 (19)0.0162 (19)0.0021 (19)
C80.043 (2)0.0304 (19)0.055 (2)0.0031 (16)0.0192 (18)0.0039 (17)
C90.046 (2)0.043 (2)0.053 (2)0.0009 (18)0.0183 (19)0.0058 (18)
C100.047 (2)0.035 (2)0.056 (2)0.0028 (17)0.0215 (19)0.0021 (18)
C110.046 (2)0.043 (2)0.060 (3)0.0058 (18)0.0190 (19)0.0039 (19)
C120.044 (2)0.039 (2)0.065 (3)0.0067 (18)0.023 (2)0.0010 (19)
N10.0381 (17)0.0437 (18)0.060 (2)0.0043 (15)0.0242 (16)0.0041 (16)
N20.053 (2)0.062 (2)0.058 (2)0.0078 (17)0.0229 (17)0.0039 (17)
O10.0569 (18)0.089 (2)0.0477 (17)0.0125 (16)0.0258 (14)0.0030 (15)
O1W0.120 (3)0.107 (3)0.070 (2)0.030 (3)0.024 (2)0.032 (2)
O20.0484 (16)0.083 (2)0.0543 (18)0.0193 (16)0.0175 (14)0.0085 (16)
Geometric parameters (Å, º) top
C1—O21.256 (4)C8—C121.408 (5)
C1—O11.267 (5)C9—N11.357 (5)
C1—C21.508 (5)C9—H9A0.9300
C2—C31.387 (5)C10—N21.326 (5)
C2—C71.390 (5)C10—N11.346 (5)
C3—C41.387 (5)C10—C111.406 (5)
C3—H3A0.9300C11—C121.357 (5)
C4—C51.386 (5)C11—H11A0.9300
C4—C81.491 (5)C12—H12A0.9300
C5—C61.385 (5)N1—H1A0.8600
C5—H5A0.9300N2—H2A0.8600
C6—C71.383 (5)N2—H2B0.8600
C6—H6A0.9300O1W—H1WA0.8554
C7—H7A0.9300O1W—H1WB0.8736
C8—C91.368 (5)
O2—C1—O1123.7 (4)C9—C8—C4121.4 (4)
O2—C1—C2118.1 (3)C12—C8—C4122.1 (3)
O1—C1—C2118.2 (4)N1—C9—C8121.6 (4)
C3—C2—C7119.1 (3)N1—C9—H9A119.2
C3—C2—C1120.5 (3)C8—C9—H9A119.2
C7—C2—C1120.3 (3)N2—C10—N1118.8 (3)
C4—C3—C2121.5 (4)N2—C10—C11123.6 (4)
C4—C3—H3A119.2N1—C10—C11117.6 (3)
C2—C3—H3A119.2C12—C11—C10120.1 (4)
C5—C4—C3118.7 (4)C12—C11—H11A120.0
C5—C4—C8120.6 (3)C10—C11—H11A120.0
C3—C4—C8120.7 (4)C11—C12—C8121.6 (4)
C6—C5—C4120.2 (4)C11—C12—H12A119.2
C6—C5—H5A119.9C8—C12—H12A119.2
C4—C5—H5A119.9C10—N1—C9122.7 (3)
C7—C6—C5120.8 (4)C10—N1—H1A118.7
C7—C6—H6A119.6C9—N1—H1A118.7
C5—C6—H6A119.6C10—N2—H2A120.0
C6—C7—C2119.6 (4)C10—N2—H2B120.0
C6—C7—H7A120.2H2A—N2—H2B120.0
C2—C7—H7A120.2H1WA—O1W—H1WB105.1
C9—C8—C12116.5 (3)
O2—C1—C2—C39.5 (5)C5—C4—C8—C955.5 (5)
O1—C1—C2—C3171.0 (4)C3—C4—C8—C9124.6 (4)
O2—C1—C2—C7167.5 (4)C5—C4—C8—C12126.5 (4)
O1—C1—C2—C711.9 (5)C3—C4—C8—C1253.5 (5)
C7—C2—C3—C41.1 (5)C12—C8—C9—N10.6 (6)
C1—C2—C3—C4176.0 (3)C4—C8—C9—N1178.7 (3)
C2—C3—C4—C50.4 (5)N2—C10—C11—C12179.2 (4)
C2—C3—C4—C8179.6 (3)N1—C10—C11—C120.7 (6)
C3—C4—C5—C61.5 (6)C10—C11—C12—C81.3 (6)
C8—C4—C5—C6178.5 (4)C9—C8—C12—C111.2 (6)
C4—C5—C6—C71.1 (6)C4—C8—C12—C11179.3 (4)
C5—C6—C7—C20.5 (6)N2—C10—N1—C9179.9 (4)
C3—C2—C7—C61.5 (5)C11—C10—N1—C90.1 (5)
C1—C2—C7—C6175.6 (3)C8—C9—N1—C100.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.872.715 (4)167
N2—H2A···O2i0.861.952.803 (4)172
N2—H2B···O1W0.862.192.915 (5)142
O1W—H1WA···O2ii0.862.002.761 (5)147
O1W—H1WB···O1iii0.872.162.928 (5)146
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.872.715 (4)167.2
N2—H2A···O2i0.861.952.803 (4)171.6
N2—H2B···O1W0.862.192.915 (5)141.5
O1W—H1WA···O2ii0.862.002.761 (5)146.9
O1W—H1WB···O1iii0.872.162.928 (5)146.0
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
references
References top

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tang, L., Fu, F., Wu, Y. P., Hou, X. Y. & Gao, L. J. (2011). J. Coord. Chem. 64, 3146–3157.

Zhong, R. Q., Zou, R. Q., Du, M., Jiang, L., Yamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008). CrystEngComm, 10, 605–613.