organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3144-o3145

N,N-Di­ethyl-2-(4-methyl­benzene­sulfonamido)­benzamide

aChemistry Department, Menarini Ricerche S.p.A., Via dei Sette Santi 3, I-50131 Firenze, Italy, and bDip. Energetica "Sergio Stecco", University of Firenze, Via S. Marta 3, I-50139 Firenze, Italy
*Correspondence e-mail: paolapaoli@unifi.it

(Received 20 September 2012; accepted 11 October 2012; online 20 October 2012)

The asymmetric unit of the title compound, C18H22N2O3S, contains two mol­ecules, exhibiting similar conformations [C—S—N—C torsion angles of −82.2 (2) and −70.4 (2)°, and dihedral angles between the mean planes of the aromatic rings of 56.6 (6) and 51.6 (6)° in mol­ecules I and II, respectively]. However, the two independent mol­ecules show distinctly different hydrogen-bonding patterns. In the crystal, molecules I form inversion dimers via pairs of N—H⋯O hydrogen bonds, whereas for molecules II the N—H⋯O hydrogen bond is intramolecular. The hydrogen-bonded dimers of I further propagate along the b-axis direction through ππ inter­actions [the distance between ring centroids is 3.8424 (8) Å].

Related literature

For the synthesis of the title compound, see: Bakker et al. (1997[Bakker, W. I. I., Familoni, O. B., Padfield, J. & Snieckus, V. (1997). Synlett, 9, 1079-1080.]); Kaul et al. (2002[Kaul, S., Kumar, A., Sain, B. & Gupta, A. K. (2002). Synth. Commun. 32, 2885-2891.]). For the biological activity of compounds having the sulfonamide –SO2NH– group, see: Lu & Tucker (2007[Lu, R. J. & Tucker, J. A. (2007). J. Med. Chem. 50, 6535-6544.]); Tappe et al. (2008[Tappe, W., Zarfl, C., Kummer, S., Burauel, P., Vereecken, H. & Groeneweg, J. (2008). Chemosphere, 72, 836-843.]); Chegwidden et al. (2000[Chegwidden, W. R., Carter, N. D. & Edwards, Y. H. (2000). The Carbonic Anhydrases New Horizons. Basel: Birkhauser Verlag.]); Purushottamachar et al. (2008[Purushottamachar, P., Khandelwal, A., Vasaitis, T. S., Bruno, R. D., Gediya, L. K. & Njar, V. C. O. (2008). Bioorg. Med. Chem. 16, 3519-3529.]). For structural and conformational studies of mol­ecules featuring the sulfonamide moiety, see: Parkin et al. (2008[Parkin, A., Collins, A., Gilmore, C. J. & Wilson, C. C. (2008). Acta Cryst. B64, 66-71.]); Perlovich et al. (2009[Perlovich, G. L., Tkachev, V. V., Strakhova, N. N., Kazachenko, V. P., Volkova, T. V., Surov, O. V., Schaper, K.-J. & Raevsky, O. A. (2009). J. Pharm. Sci. 98, 4738-4755.], 2011[Perlovich, G. L., Ryzhakov, A. M., Tkachev, T. T. & Hansen, L. K. (2011). Cryst. Growth Des. 11, 1067-1081.]); Altamura et al. (2009[Altamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219-2231.]); Vega-Hissi et al. (2011[Vega-Hissi, E. G., Andrada, M. F., Zamarbide, G. N., Estrada, M. R. & Tomas-Vert, F. (2011). J. Mol. Model. 17, 1317-1323.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O3S

  • Mr = 346.43

  • Triclinic, [P \overline 1]

  • a = 9.4674 (6) Å

  • b = 12.2882 (9) Å

  • c = 16.0569 (12) Å

  • α = 108.426 (7)°

  • β = 97.357 (6)°

  • γ = 100.245 (6)°

  • V = 1709.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 150 K

  • 0.54 × 0.43 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.894, Tmax = 1.000

  • 17890 measured reflections

  • 7512 independent reflections

  • 4728 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 0.96

  • 7512 reflections

  • 441 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1′—HN1′⋯O3′ 0.81 (2) 2.15 (2) 2.809 (2) 139 (2)
N1—HN1⋯O3i 0.86 (2) 2.15 (2) 2.969 (2) 159 (2)
Symmetry code: (i) -x+2, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The sulfonamide moiety is a common pharmacophore in many biologically active compounds, such as HIV inhibitors (Lu & Tucker, 2007), antimicrobial drugs (Tappe et al., 2008), carbonic anhydrase inhibitors (Chegwidden et al., 2000), and anti-tumor agents (Purushottamachar et al., 2008). Because the structural and conformational properties of a compound usually are related to its biological properties, their study would provide useful information to design new effective drugs. In this regard, there are many recent publications reporting structural data on related sulfonamides (Parkin et al., 2008, Altamura et al., 2009, Perlovich et al., 2009, Perlovich et al., 2011,Vega-Hissi et al., 2011).

The asymmetric unit of the title compound contains two independent molecules, I and II, which are almost superimposable (Table 1). As expected, a staggered conformation about the N—S bond is adopted, with the N lone pair bisecting the OŜO angle, and with the p orbital at the ipso carbon bisecting the same angle (Table 1, Fig. 1). The sulfonamide nitrogen atom is almost planar-trigonal in molecule I (Σ<N=355 (1)°), while in II it is definitely more pyramidal (Σ<N=341 (1)°). The conformation of molecule II is stabilized by an intramolecular H-bond involving the H atom of the sulfonamide grouping (HN1') and the oxygen atom O3' of the amide moiety (Table 2). In the crystal packing, molecules I form dimers instead, which are held together by a couple of N—H···O=C hydrogen bonds (Table 2, Fig. 2). Dimers propagate along the b axis direction through π-π stacking interactions involving two symmetry related C1—C6 rings (centroid-centroid distance 3.8424 (8) Å, symmetry code: -x + 2, -y + 1, -z). No further significant intermolecular interactions are present in the crystal structure.

Related literature top

For the synthesis of the title compound, see: Bakker et al. (1997); Kaul et al. (2002). For the biological activity of compounds having the sulfonamide –SO2NH– group, see: Lu & Tucker (2007); Tappe et al. (2008); Chegwidden et al. (2000); Purushottamachar et al. (2008). For structural and conformational studies of molecules featuring the sulfonamide moiety, see: Parkin et al. (2008); Perlovich et al. (2009, 2011); Altamura et al. (2009); Vega-Hissi et al. (2011).

Experimental top

For the synthesis of the title compound, see: Bakker et al. (1997); Kaul et al., (2002). Crystals of N,N-diethyl-2-(4-methylphenylsulfonamido)benzamide suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of an ethanol/water solution of N,N-diethyl-2-(4-methylphenylsulfonamido)benzamide.

Refinement top

The N—H H atoms were located in the Fourier difference map and their coordinates were refined with Uiso(H) = 1.2Ueq(N). All other H atoms were positioned using idealized geometry, and refined using a riding model with Uiso(H) 1.2 times Ueq(C) (1.5 for methyl H atoms).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The symmetrically independent molecule I (molecule II has a similar shape and the same labelling scheme). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound as viewed along the a-axis (molecules I are shown in blue and molecules II - in red). Intermolecular NH···O hydrogen bonding is shown as dashed lines.
N,N-Diethyl-2-(4-methylbenzenesulfonamido)benzamide top
Crystal data top
C18H22N2O3SZ = 4
Mr = 346.43F(000) = 736
Triclinic, P1Dx = 1.346 Mg m3
a = 9.4674 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2882 (9) Åθ = 4.1–28.6°
c = 16.0569 (12) ŵ = 0.21 mm1
α = 108.426 (7)°T = 150 K
β = 97.357 (6)°Parallelepiped, colourless
γ = 100.245 (6)°0.54 × 0.43 × 0.38 mm
V = 1709.7 (2) Å3
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
7512 independent reflections
Radiation source: Enhance (Mo) X-ray Source4728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.4547 pixels mm-1θmax = 28.7°, θmin = 4.1°
ω scansh = 1211
Absorption correction: multi-scan
(ABSPACK in CrysAlis RED; Oxford Diffraction, 2006)
k = 1516
Tmin = 0.894, Tmax = 1.000l = 2121
17890 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
7512 reflections(Δ/σ)max = 0.001
441 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H22N2O3Sγ = 100.245 (6)°
Mr = 346.43V = 1709.7 (2) Å3
Triclinic, P1Z = 4
a = 9.4674 (6) ÅMo Kα radiation
b = 12.2882 (9) ŵ = 0.21 mm1
c = 16.0569 (12) ÅT = 150 K
α = 108.426 (7)°0.54 × 0.43 × 0.38 mm
β = 97.357 (6)°
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
7512 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis RED; Oxford Diffraction, 2006)
4728 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 1.000Rint = 0.025
17890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.42 e Å3
7512 reflectionsΔρmin = 0.32 e Å3
441 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.22768 (5)0.28575 (4)0.00356 (3)0.02970 (14)
O11.18234 (15)0.23441 (12)0.09887 (8)0.0365 (3)
O21.36507 (14)0.36978 (12)0.03457 (9)0.0365 (3)
O31.03929 (14)0.01020 (12)0.08734 (9)0.0329 (3)
N11.23284 (17)0.17480 (15)0.03138 (10)0.0278 (4)
HN11.158 (2)0.1167 (18)0.0058 (13)0.033*
N20.98318 (16)0.13823 (13)0.19374 (10)0.0257 (4)
C11.0900 (2)0.35179 (16)0.03962 (12)0.0268 (4)
C21.1191 (2)0.42734 (17)0.12797 (13)0.0311 (5)
H21.21080.44290.16380.037*
C31.0114 (2)0.47931 (17)0.16265 (13)0.0331 (5)
H31.03150.52960.22200.040*
C40.8731 (2)0.45770 (17)0.11021 (13)0.0308 (5)
C50.8479 (2)0.38376 (18)0.02171 (14)0.0348 (5)
H50.75700.36980.01460.042*
C60.9537 (2)0.33011 (18)0.01428 (13)0.0334 (5)
H60.93390.28020.07370.040*
C71.30951 (19)0.18780 (16)0.11830 (12)0.0262 (4)
C81.23673 (19)0.14737 (16)0.17723 (12)0.0257 (4)
C91.3163 (2)0.15919 (17)0.26008 (12)0.0304 (5)
H91.26910.13120.29910.037*
C101.4645 (2)0.21191 (18)0.28524 (13)0.0343 (5)
H101.51620.22060.34110.041*
C111.5345 (2)0.25127 (18)0.22645 (13)0.0332 (5)
H111.63400.28680.24310.040*
C121.4591 (2)0.23881 (17)0.14310 (13)0.0305 (5)
H121.50820.26440.10370.037*
C130.7557 (2)0.51226 (19)0.14887 (15)0.0397 (5)
H13A0.66500.47980.10620.060*
H13B0.78260.59600.16260.060*
H13C0.74440.49590.20260.060*
C141.0785 (2)0.08570 (17)0.14925 (12)0.0250 (4)
C150.82675 (19)0.07980 (17)0.16405 (13)0.0293 (4)
H15A0.77660.10540.21330.035*
H15B0.81540.00480.14720.035*
C160.7572 (2)0.10750 (18)0.08525 (13)0.0326 (5)
H16A0.65540.06800.06770.049*
H16B0.80540.08100.03600.049*
H16C0.76660.19110.10200.049*
C171.0220 (2)0.25858 (16)0.25954 (12)0.0291 (4)
H17A0.95270.30200.24430.035*
H17B1.11830.29790.25610.035*
C181.0228 (2)0.26194 (18)0.35513 (13)0.0373 (5)
H18A1.04860.34240.39510.056*
H18B1.09300.22080.37120.056*
H18C0.92720.22470.35940.056*
S1'0.36428 (5)0.62169 (4)0.38496 (3)0.02947 (14)
O1'0.25700 (14)0.66660 (13)0.43239 (9)0.0389 (4)
O2'0.34408 (14)0.49807 (12)0.34048 (9)0.0356 (3)
O3'0.71780 (14)0.88703 (11)0.52660 (9)0.0346 (3)
N1'0.51694 (17)0.66700 (15)0.46038 (11)0.0279 (4)
HN1'0.534 (2)0.7376 (18)0.4848 (14)0.033*
N2'0.81608 (16)0.90225 (13)0.40820 (10)0.0263 (4)
C1'0.39078 (18)0.69322 (17)0.30717 (12)0.0273 (4)
C2'0.45199 (19)0.64421 (18)0.23389 (13)0.0297 (4)
H2'0.47870.57270.22510.036*
C3'0.4727 (2)0.70303 (18)0.17430 (13)0.0316 (5)
H3'0.51440.67060.12560.038*
C4'0.43286 (19)0.80900 (18)0.18556 (13)0.0314 (5)
C5'0.3715 (2)0.85577 (19)0.25892 (14)0.0369 (5)
H5'0.34310.92650.26710.044*
C6'0.3517 (2)0.79973 (18)0.32016 (13)0.0345 (5)
H6'0.31240.83330.36970.041*
C7'0.64714 (19)0.63062 (17)0.43794 (12)0.0246 (4)
C8'0.76801 (19)0.71269 (16)0.43306 (12)0.0251 (4)
C9'0.8955 (2)0.67471 (17)0.41748 (12)0.0279 (4)
H9'0.97650.72770.41450.034*
C10'0.9044 (2)0.56046 (18)0.40639 (13)0.0319 (5)
H10'0.99060.53690.39630.038*
C11'0.7839 (2)0.48063 (17)0.41038 (13)0.0316 (5)
H11'0.78940.40330.40250.038*
C12'0.6555 (2)0.51581 (17)0.42602 (13)0.0293 (4)
H12'0.57500.46200.42850.035*
C13'0.4544 (2)0.8733 (2)0.12051 (14)0.0437 (6)
H13D0.52860.84820.08850.066*
H13E0.48420.95670.15280.066*
H13F0.36420.85590.07890.066*
C14'0.76384 (19)0.84015 (17)0.45779 (12)0.0263 (4)
C15'0.8238 (2)1.02962 (17)0.44075 (13)0.0318 (5)
H15C0.90331.06900.42030.038*
H15D0.84651.05890.50570.038*
C16'0.6845 (2)1.0613 (2)0.40996 (15)0.0457 (6)
H16D0.69681.14540.43340.069*
H16E0.60561.02440.43120.069*
H16F0.66241.03440.34570.069*
C17'0.8356 (2)0.85147 (18)0.31525 (12)0.0305 (5)
H17C0.77520.88000.27720.037*
H17D0.80150.76640.29520.037*
C18'0.9930 (2)0.8811 (2)0.30377 (14)0.0443 (6)
H18D0.99800.84550.24200.066*
H18E1.05340.85150.34000.066*
H18F1.02700.96510.32200.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (3)0.0309 (3)0.0249 (3)0.0009 (2)0.0054 (2)0.0110 (2)
O10.0445 (8)0.0397 (9)0.0227 (7)0.0037 (7)0.0059 (6)0.0109 (7)
O20.0314 (7)0.0366 (8)0.0390 (8)0.0025 (6)0.0063 (6)0.0153 (7)
O30.0342 (7)0.0305 (8)0.0278 (7)0.0052 (6)0.0064 (6)0.0029 (7)
N10.0266 (8)0.0268 (10)0.0249 (9)0.0003 (7)0.0016 (7)0.0071 (8)
N20.0283 (8)0.0233 (9)0.0245 (8)0.0048 (7)0.0064 (7)0.0069 (7)
C10.0323 (10)0.0229 (10)0.0241 (10)0.0005 (8)0.0027 (8)0.0113 (9)
C20.0320 (11)0.0308 (12)0.0274 (11)0.0020 (9)0.0003 (9)0.0111 (9)
C30.0401 (12)0.0313 (12)0.0259 (11)0.0053 (9)0.0046 (9)0.0097 (10)
C40.0377 (11)0.0225 (11)0.0340 (12)0.0039 (9)0.0046 (9)0.0150 (10)
C50.0301 (11)0.0346 (12)0.0383 (12)0.0048 (9)0.0028 (9)0.0159 (10)
C60.0372 (11)0.0312 (12)0.0268 (11)0.0021 (9)0.0005 (9)0.0090 (10)
C70.0280 (10)0.0261 (11)0.0225 (10)0.0079 (8)0.0044 (8)0.0052 (9)
C80.0284 (10)0.0219 (10)0.0263 (10)0.0073 (8)0.0053 (8)0.0069 (9)
C90.0367 (11)0.0311 (12)0.0254 (10)0.0115 (9)0.0082 (9)0.0096 (9)
C100.0358 (11)0.0357 (12)0.0276 (11)0.0132 (9)0.0023 (9)0.0063 (10)
C110.0238 (10)0.0357 (12)0.0338 (11)0.0071 (9)0.0004 (9)0.0055 (10)
C120.0294 (10)0.0304 (11)0.0317 (11)0.0075 (9)0.0089 (9)0.0093 (10)
C130.0403 (12)0.0358 (13)0.0450 (13)0.0087 (10)0.0081 (10)0.0168 (11)
C140.0305 (10)0.0246 (11)0.0216 (10)0.0052 (8)0.0050 (8)0.0108 (9)
C150.0265 (10)0.0307 (11)0.0315 (11)0.0053 (8)0.0098 (9)0.0108 (9)
C160.0302 (10)0.0376 (12)0.0325 (11)0.0104 (9)0.0082 (9)0.0137 (10)
C170.0333 (11)0.0253 (11)0.0313 (11)0.0103 (9)0.0095 (9)0.0101 (9)
C180.0493 (13)0.0328 (12)0.0299 (11)0.0142 (10)0.0081 (10)0.0086 (10)
S1'0.0235 (2)0.0323 (3)0.0314 (3)0.0011 (2)0.0062 (2)0.0119 (2)
O1'0.0278 (7)0.0482 (9)0.0444 (9)0.0060 (7)0.0164 (7)0.0190 (8)
O2'0.0335 (7)0.0288 (8)0.0369 (8)0.0040 (6)0.0007 (6)0.0093 (7)
O3'0.0431 (8)0.0284 (8)0.0290 (8)0.0027 (6)0.0121 (7)0.0067 (7)
N1'0.0286 (9)0.0247 (9)0.0289 (9)0.0024 (8)0.0072 (7)0.0090 (8)
N2'0.0269 (8)0.0237 (9)0.0255 (9)0.0003 (7)0.0012 (7)0.0096 (7)
C1'0.0190 (9)0.0322 (11)0.0278 (10)0.0023 (8)0.0008 (8)0.0100 (9)
C2'0.0238 (10)0.0305 (11)0.0316 (11)0.0048 (8)0.0037 (9)0.0082 (10)
C3'0.0273 (10)0.0388 (13)0.0276 (11)0.0041 (9)0.0049 (9)0.0119 (10)
C4'0.0240 (10)0.0355 (12)0.0316 (11)0.0006 (9)0.0020 (9)0.0144 (10)
C5'0.0406 (12)0.0336 (12)0.0381 (12)0.0125 (10)0.0042 (10)0.0138 (11)
C6'0.0345 (11)0.0387 (13)0.0312 (11)0.0134 (10)0.0085 (9)0.0100 (10)
C7'0.0242 (9)0.0288 (11)0.0199 (9)0.0034 (8)0.0026 (8)0.0095 (9)
C8'0.0266 (10)0.0249 (11)0.0200 (10)0.0006 (8)0.0006 (8)0.0079 (9)
C9'0.0262 (10)0.0291 (11)0.0264 (10)0.0008 (8)0.0035 (8)0.0105 (9)
C10'0.0272 (10)0.0349 (12)0.0312 (11)0.0062 (9)0.0034 (9)0.0097 (10)
C11'0.0366 (11)0.0260 (11)0.0304 (11)0.0069 (9)0.0023 (9)0.0090 (9)
C12'0.0298 (10)0.0268 (11)0.0299 (11)0.0005 (8)0.0024 (9)0.0133 (9)
C13'0.0447 (13)0.0475 (14)0.0386 (13)0.0027 (11)0.0016 (11)0.0216 (11)
C14'0.0241 (10)0.0251 (11)0.0256 (10)0.0005 (8)0.0008 (8)0.0076 (9)
C15'0.0361 (11)0.0240 (11)0.0303 (11)0.0016 (9)0.0020 (9)0.0092 (9)
C16'0.0511 (14)0.0364 (13)0.0467 (14)0.0125 (11)0.0002 (11)0.0128 (11)
C17'0.0304 (10)0.0321 (12)0.0246 (10)0.0013 (9)0.0012 (9)0.0102 (9)
C18'0.0385 (12)0.0611 (16)0.0281 (11)0.0002 (11)0.0080 (10)0.0141 (11)
Geometric parameters (Å, º) top
S1—O11.4315 (13)S1'—O2'1.4248 (14)
S1—O21.4324 (13)S1'—O1'1.4311 (14)
S1—N11.6358 (17)S1'—N1'1.6446 (17)
S1—C11.758 (2)S1'—C1'1.758 (2)
O3—C141.235 (2)O3'—C14'1.246 (2)
N1—C71.435 (2)N1'—C7'1.434 (2)
N1—HN10.86 (2)N1'—HN1'0.81 (2)
N2—C141.350 (2)N2'—C14'1.346 (2)
N2—C171.469 (2)N2'—C15'1.470 (2)
N2—C151.470 (2)N2'—C17'1.475 (2)
C1—C21.388 (3)C1'—C6'1.383 (3)
C1—C61.390 (3)C1'—C2'1.391 (3)
C2—C31.381 (3)C2'—C3'1.382 (3)
C2—H20.9300C2'—H2'0.9300
C3—C41.395 (3)C3'—C4'1.384 (3)
C3—H30.9300C3'—H3'0.9300
C4—C51.386 (3)C4'—C5'1.386 (3)
C4—C131.500 (3)C4'—C13'1.509 (3)
C5—C61.384 (3)C5'—C6'1.380 (3)
C5—H50.9300C5'—H5'0.9300
C6—H60.9300C6'—H6'0.9300
C7—C121.393 (3)C7'—C12'1.381 (3)
C7—C81.400 (3)C7'—C8'1.413 (2)
C8—C91.393 (3)C8'—C9'1.393 (3)
C8—C141.493 (2)C8'—C14'1.498 (3)
C9—C101.385 (3)C9'—C10'1.377 (3)
C9—H90.9300C9'—H9'0.9300
C10—C111.378 (3)C10'—C11'1.388 (3)
C10—H100.9300C10'—H10'0.9300
C11—C121.382 (3)C11'—C12'1.388 (3)
C11—H110.9300C11'—H11'0.9300
C12—H120.9300C12'—H12'0.9300
C13—H13A0.9600C13'—H13D0.9600
C13—H13B0.9600C13'—H13E0.9600
C13—H13C0.9600C13'—H13F0.9600
C15—C161.513 (3)C15'—C16'1.508 (3)
C15—H15A0.9700C15'—H15C0.9700
C15—H15B0.9700C15'—H15D0.9700
C16—H16A0.9600C16'—H16D0.9600
C16—H16B0.9600C16'—H16E0.9600
C16—H16C0.9600C16'—H16F0.9600
C17—C181.521 (3)C17'—C18'1.518 (3)
C17—H17A0.9700C17'—H17C0.9700
C17—H17B0.9700C17'—H17D0.9700
C18—H18A0.9600C18'—H18D0.9600
C18—H18B0.9600C18'—H18E0.9600
C18—H18C0.9600C18'—H18F0.9600
O1—S1—O2119.57 (8)O2'—S1'—O1'120.27 (8)
O1—S1—N1105.49 (8)O2'—S1'—N1'107.60 (8)
O2—S1—N1107.66 (8)O1'—S1'—N1'104.98 (8)
O1—S1—C1108.16 (9)O2'—S1'—C1'108.68 (9)
O2—S1—C1107.99 (9)O1'—S1'—C1'107.76 (9)
N1—S1—C1107.40 (8)N1'—S1'—C1'106.80 (8)
C7—N1—S1123.27 (13)C7'—N1'—S1'120.56 (13)
C7—N1—HN1118.4 (13)C7'—N1'—HN1'110.6 (14)
S1—N1—HN1113.0 (13)S1'—N1'—HN1'110.0 (15)
C14—N2—C17124.10 (15)C14'—N2'—C15'117.36 (15)
C14—N2—C15117.84 (15)C14'—N2'—C17'125.41 (16)
C17—N2—C15117.24 (14)C15'—N2'—C17'115.80 (15)
C2—C1—C6120.03 (18)C6'—C1'—C2'120.19 (18)
C2—C1—S1119.44 (14)C6'—C1'—S1'119.29 (14)
C6—C1—S1120.52 (15)C2'—C1'—S1'120.51 (15)
C3—C2—C1119.89 (18)C3'—C2'—C1'119.20 (19)
C3—C2—H2120.1C3'—C2'—H2'120.4
C1—C2—H2120.1C1'—C2'—H2'120.4
C2—C3—C4121.13 (18)C2'—C3'—C4'121.49 (18)
C2—C3—H3119.4C2'—C3'—H3'119.3
C4—C3—H3119.4C4'—C3'—H3'119.3
C5—C4—C3117.83 (18)C3'—C4'—C5'118.20 (18)
C5—C4—C13121.32 (18)C3'—C4'—C13'121.76 (18)
C3—C4—C13120.85 (18)C5'—C4'—C13'120.04 (19)
C6—C5—C4122.02 (18)C6'—C5'—C4'121.47 (19)
C6—C5—H5119.0C6'—C5'—H5'119.3
C4—C5—H5119.0C4'—C5'—H5'119.3
C5—C6—C1119.07 (18)C5'—C6'—C1'119.44 (18)
C5—C6—H6120.5C5'—C6'—H6'120.3
C1—C6—H6120.5C1'—C6'—H6'120.3
C12—C7—C8119.84 (17)C12'—C7'—C8'120.49 (17)
C12—C7—N1119.24 (17)C12'—C7'—N1'118.96 (16)
C8—C7—N1120.90 (16)C8'—C7'—N1'120.45 (16)
C9—C8—C7118.94 (17)C9'—C8'—C7'118.05 (17)
C9—C8—C14120.59 (17)C9'—C8'—C14'121.72 (16)
C7—C8—C14120.36 (16)C7'—C8'—C14'119.60 (16)
C10—C9—C8121.10 (18)C10'—C9'—C8'121.49 (17)
C10—C9—H9119.4C10'—C9'—H9'119.3
C8—C9—H9119.4C8'—C9'—H9'119.3
C11—C10—C9119.21 (19)C9'—C10'—C11'119.66 (18)
C11—C10—H10120.4C9'—C10'—H10'120.2
C9—C10—H10120.4C11'—C10'—H10'120.2
C10—C11—C12121.06 (18)C12'—C11'—C10'120.24 (18)
C10—C11—H11119.5C12'—C11'—H11'119.9
C12—C11—H11119.5C10'—C11'—H11'119.9
C11—C12—C7119.83 (18)C7'—C12'—C11'120.06 (17)
C11—C12—H12120.1C7'—C12'—H12'120.0
C7—C12—H12120.1C11'—C12'—H12'120.0
C4—C13—H13A109.5C4'—C13'—H13D109.5
C4—C13—H13B109.5C4'—C13'—H13E109.5
H13A—C13—H13B109.5H13D—C13'—H13E109.5
C4—C13—H13C109.5C4'—C13'—H13F109.5
H13A—C13—H13C109.5H13D—C13'—H13F109.5
H13B—C13—H13C109.5H13E—C13'—H13F109.5
O3—C14—N2122.48 (16)O3'—C14'—N2'121.77 (17)
O3—C14—C8119.72 (16)O3'—C14'—C8'118.54 (16)
N2—C14—C8117.80 (16)N2'—C14'—C8'119.61 (16)
N2—C15—C16111.74 (15)N2'—C15'—C16'113.69 (16)
N2—C15—H15A109.3N2'—C15'—H15C108.8
C16—C15—H15A109.3C16'—C15'—H15C108.8
N2—C15—H15B109.3N2'—C15'—H15D108.8
C16—C15—H15B109.3C16'—C15'—H15D108.8
H15A—C15—H15B107.9H15C—C15'—H15D107.7
C15—C16—H16A109.5C15'—C16'—H16D109.5
C15—C16—H16B109.5C15'—C16'—H16E109.5
H16A—C16—H16B109.5H16D—C16'—H16E109.5
C15—C16—H16C109.5C15'—C16'—H16F109.5
H16A—C16—H16C109.5H16D—C16'—H16F109.5
H16B—C16—H16C109.5H16E—C16'—H16F109.5
N2—C17—C18113.09 (16)N2'—C17'—C18'113.74 (15)
N2—C17—H17A109.0N2'—C17'—H17C108.8
C18—C17—H17A109.0C18'—C17'—H17C108.8
N2—C17—H17B109.0N2'—C17'—H17D108.8
C18—C17—H17B109.0C18'—C17'—H17D108.8
H17A—C17—H17B107.8H17C—C17'—H17D107.7
C17—C18—H18A109.5C17'—C18'—H18D109.5
C17—C18—H18B109.5C17'—C18'—H18E109.5
H18A—C18—H18B109.5H18D—C18'—H18E109.5
C17—C18—H18C109.5C17'—C18'—H18F109.5
H18A—C18—H18C109.5H18D—C18'—H18F109.5
H18B—C18—H18C109.5H18E—C18'—H18F109.5
C1—S1—N1—C782.2 (2)C1'—S1'—N1'—C7'70.4 (2)
HN1—N1—S1—O144 (1)HN1'—N1'—S1'—O1'54 (2)
C7—N1—S1—O233.9 (2)C7'—N1'—S1'—O2'46.1 (2)
C6—C1—S1—O111.7 (2)C6'—C1'—S1'—O1'20.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O30.81 (2)2.15 (2)2.809 (2)139 (2)
N1—HN1···O3i0.86 (2)2.15 (2)2.969 (2)159 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC18H22N2O3S
Mr346.43
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.4674 (6), 12.2882 (9), 16.0569 (12)
α, β, γ (°)108.426 (7), 97.357 (6), 100.245 (6)
V3)1709.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.54 × 0.43 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correctionMulti-scan
(ABSPACK in CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.894, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17890, 7512, 4728
Rint0.025
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 0.96
No. of reflections7512
No. of parameters441
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Selected torsion angles (º) top
C1—S1—N1—C782.2 (2)C1'—S1'—N1'—C7'70.4 (2)
HN1—N1—S1—O144 (1)HN1'—N1'—S1'—O1'54 (2)
C7—N1—S1—O233.9 (2)C7'—N1'—S1'—O2'46.1 (2)
C6—C1—S1—O111.7 (2)C6'—C1'—S1'—O1'20.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1'—HN1'···O3'0.81 (2)2.15 (2)2.809 (2)139 (2)
N1—HN1···O3i0.86 (2)2.15 (2)2.969 (2)159 (2)
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze), where the data collection was performed.

References

First citationAltamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219–2231.  Web of Science CSD CrossRef CAS
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBakker, W. I. I., Familoni, O. B., Padfield, J. & Snieckus, V. (1997). Synlett, 9, 1079–1080.  CrossRef
First citationChegwidden, W. R., Carter, N. D. & Edwards, Y. H. (2000). The Carbonic Anhydrases New Horizons. Basel: Birkhauser Verlag.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationKaul, S., Kumar, A., Sain, B. & Gupta, A. K. (2002). Synth. Commun. 32, 2885–2891.  Web of Science CrossRef CAS
First citationLu, R. J. & Tucker, J. A. (2007). J. Med. Chem. 50, 6535–6544.  Web of Science CrossRef PubMed CAS
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
First citationParkin, A., Collins, A., Gilmore, C. J. & Wilson, C. C. (2008). Acta Cryst. B64, 66–71.  Web of Science CrossRef IUCr Journals
First citationPerlovich, G. L., Ryzhakov, A. M., Tkachev, T. T. & Hansen, L. K. (2011). Cryst. Growth Des. 11, 1067–1081.  Web of Science CSD CrossRef CAS
First citationPerlovich, G. L., Tkachev, V. V., Strakhova, N. N., Kazachenko, V. P., Volkova, T. V., Surov, O. V., Schaper, K.-J. & Raevsky, O. A. (2009). J. Pharm. Sci. 98, 4738–4755.  Web of Science CSD CrossRef PubMed CAS
First citationPurushottamachar, P., Khandelwal, A., Vasaitis, T. S., Bruno, R. D., Gediya, L. K. & Njar, V. C. O. (2008). Bioorg. Med. Chem. 16, 3519–3529.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTappe, W., Zarfl, C., Kummer, S., Burauel, P., Vereecken, H. & Groeneweg, J. (2008). Chemosphere, 72, 836–843.  Web of Science CrossRef PubMed CAS
First citationVega-Hissi, E. G., Andrada, M. F., Zamarbide, G. N., Estrada, M. R. & Tomas-Vert, F. (2011). J. Mol. Model. 17, 1317–1323.  Web of Science CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3144-o3145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds