supplementary materials


lh5536 scheme

Acta Cryst. (2012). E68, o3067    [ doi:10.1107/S1600536812040883 ]

N-(4-chlorobenzoyl)-N-(2-chlorophenyl)-O-[2-(2-nitrophenyl)acetyl]hydroxylamine

J. Ma, Y. Ma and D. He

Abstract top

In the title hydroxamic acid derivate, C21H14N2O5Cl2, the nitro-substituted benzene ring forms dihedral angles of 66.0 (2) and 59.6 (2)°, with the p-chloro and o-chloro-substituted benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings is 64.2 (2) Å. In the crystal, weak C-H...O hydrogen bonds link the molecules along [010]. The crystal studied was an inversion twin with refined components in the ratio 0.60 (7):0.40 (7).

Comment top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals (Noh et al., 2009; Zeng et al., 2003). The molecular structure of the title compound is sjown in Fig. 1. The nitro-substituted benzene ring (C16-C24) forms dihedral angles of 66.0 (2) and 59.6 (2)°, with the 4-chloro (C1-C6) and 2-chloro-substituted (C8-C13) benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings (C1-6/C8-C13) is 64.2 (2)Å. In the crystal, weak C—H···O hydrogen bonds linke molecules along [010] (Fig .2). The bond legths and angles can be compared to those in N-(2-Chlorophenyl)-1-phenylformamido 3-(2-nitrophenyl)propanoate (Zhang et al., 2012).

Related literature top

For applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the synthesis, see: Ayyangark et al. (1986). For a related structure, see: Zhang et al. (2012).

Experimental top

The title compound (I) was prepared according to the method described by Ayyangark et al. (1986). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution of (I) in dichloromethane-methanol (1:3 v/v).

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 and 0.97Å and included in a riding-model approximation with Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
N-(4-chlorobenzoyl)-N-(2-chlorophenyl)-O-[2-(2- nitrophenyl)acetyl]hydroxylamine top
Crystal data top
C21H14Cl2N2O5F(000) = 456
Mr = 445.24Dx = 1.450 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 985 reflections
a = 12.366 (14) Åθ = 2.7–19.2°
b = 6.789 (8) ŵ = 0.36 mm1
c = 12.579 (14) ÅT = 296 K
β = 105.150 (14)°Block, colorless
V = 1019 (2) Å30.21 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3669 independent reflections
Radiation source: fine-focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.929, Tmax = 0.945k = 88
5091 measured reflectionsl = 1514
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0117P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.054(Δ/σ)max < 0.001
wR(F2) = 0.069Δρmax = 0.17 e Å3
S = 0.99Δρmin = 0.16 e Å3
3669 reflectionsAbsolute structure: Flack (1983), 1624 Friedel pairs
271 parametersFlack parameter: 0.40 (7)
1 restraint
Crystal data top
C21H14Cl2N2O5V = 1019 (2) Å3
Mr = 445.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.366 (14) ŵ = 0.36 mm1
b = 6.789 (8) ÅT = 296 K
c = 12.579 (14) Å0.21 × 0.20 × 0.16 mm
β = 105.150 (14)°
Data collection top
Bruker APEXII CCD
diffractometer
3669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1821 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.945Rint = 0.030
5091 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.17 e Å3
S = 0.99Δρmin = 0.16 e Å3
3669 reflectionsAbsolute structure: Flack (1983), 1624 Friedel pairs
271 parametersFlack parameter: 0.40 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0147 (3)0.5015 (8)0.8371 (3)0.0556 (12)
H10.04220.40070.88690.067*
C20.0321 (4)0.6675 (7)0.8709 (3)0.0590 (13)
H20.03630.67860.94340.071*
C30.0720 (4)0.8152 (6)0.7973 (4)0.0581 (14)
C40.0663 (4)0.8041 (7)0.6904 (4)0.0642 (15)
H40.09350.90610.64140.077*
C50.0194 (4)0.6382 (7)0.6562 (4)0.0554 (13)
H50.01480.62920.58380.067*
C60.0207 (3)0.4855 (7)0.7292 (3)0.0439 (11)
C70.0602 (4)0.3045 (7)0.6835 (4)0.0493 (13)
C80.2401 (3)0.3019 (7)0.8323 (4)0.0487 (12)
C90.2722 (4)0.2095 (7)0.9344 (4)0.0577 (13)
C100.3508 (4)0.2985 (10)1.0199 (5)0.0814 (17)
H100.37200.23761.08840.098*
C110.3970 (4)0.4729 (11)1.0044 (5)0.0906 (19)
H110.44840.53281.06280.109*
C120.3684 (4)0.5626 (8)0.9024 (5)0.0831 (18)
H120.40260.68010.89150.100*
C130.2899 (4)0.4789 (8)0.8174 (4)0.0640 (14)
H130.26970.54110.74920.077*
C140.2324 (3)0.0798 (8)0.6138 (4)0.0493 (13)
C150.2469 (3)0.1148 (6)0.5610 (3)0.0523 (12)
H15A0.26880.21380.61820.063*
H15B0.17540.15430.51280.063*
C160.3330 (4)0.1087 (6)0.4954 (4)0.0494 (12)
C170.2956 (4)0.1148 (7)0.3812 (4)0.0669 (14)
H170.21900.12170.34850.080*
C180.3679 (5)0.1107 (8)0.3152 (4)0.0791 (16)
H180.34060.11160.23900.095*
C190.4823 (5)0.1054 (7)0.3634 (5)0.0778 (16)
H190.53200.10530.31910.093*
C200.5227 (4)0.1003 (7)0.4756 (5)0.0690 (14)
H200.59940.09660.50820.083*
C210.4474 (4)0.1006 (6)0.5391 (4)0.0511 (12)
Cl10.13093 (10)1.0228 (2)0.84135 (10)0.0924 (4)
Cl20.21125 (11)0.0100 (2)0.95615 (10)0.0868 (4)
N10.1548 (3)0.2169 (6)0.7465 (3)0.0501 (9)
N20.4985 (4)0.0959 (6)0.6589 (4)0.0711 (13)
O10.0103 (2)0.2380 (4)0.5951 (2)0.0622 (9)
O20.1866 (2)0.0409 (4)0.7008 (2)0.0563 (8)
O30.4389 (3)0.0664 (6)0.7204 (3)0.0983 (14)
O40.5971 (3)0.1181 (7)0.6925 (3)0.1191 (16)
O50.2537 (2)0.2392 (5)0.5864 (2)0.0613 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (3)0.066 (3)0.040 (3)0.008 (3)0.015 (2)0.012 (3)
C20.068 (3)0.077 (4)0.035 (3)0.006 (3)0.017 (3)0.005 (3)
C30.053 (3)0.053 (3)0.062 (4)0.007 (3)0.005 (3)0.006 (3)
C40.068 (4)0.065 (4)0.048 (4)0.012 (3)0.006 (3)0.005 (3)
C50.063 (4)0.070 (4)0.035 (3)0.020 (3)0.016 (3)0.002 (3)
C60.038 (3)0.058 (3)0.035 (3)0.005 (3)0.007 (2)0.007 (3)
C70.050 (3)0.068 (4)0.036 (3)0.006 (3)0.022 (3)0.003 (3)
C80.029 (3)0.071 (4)0.043 (3)0.003 (3)0.005 (3)0.008 (3)
C90.046 (3)0.065 (3)0.061 (3)0.011 (3)0.010 (3)0.001 (3)
C100.067 (4)0.103 (5)0.061 (4)0.024 (4)0.007 (3)0.005 (4)
C110.076 (4)0.108 (6)0.074 (4)0.011 (5)0.006 (3)0.012 (5)
C120.055 (4)0.083 (5)0.104 (5)0.008 (4)0.008 (3)0.004 (4)
C130.049 (3)0.082 (4)0.057 (3)0.009 (3)0.007 (3)0.012 (3)
C140.031 (3)0.076 (4)0.042 (3)0.004 (3)0.011 (2)0.000 (3)
C150.042 (3)0.059 (3)0.055 (3)0.001 (3)0.010 (2)0.006 (3)
C160.040 (3)0.042 (3)0.068 (4)0.007 (3)0.017 (3)0.004 (3)
C170.067 (4)0.082 (3)0.051 (3)0.009 (3)0.013 (3)0.011 (3)
C180.101 (5)0.082 (4)0.063 (4)0.014 (4)0.036 (4)0.003 (3)
C190.083 (5)0.055 (3)0.114 (5)0.009 (4)0.059 (4)0.005 (4)
C200.050 (3)0.050 (3)0.110 (5)0.003 (3)0.025 (3)0.012 (4)
C210.049 (3)0.038 (3)0.069 (4)0.001 (3)0.019 (3)0.000 (3)
Cl10.0909 (10)0.0798 (10)0.0966 (10)0.0165 (10)0.0068 (8)0.0179 (9)
Cl20.1014 (10)0.0849 (11)0.0788 (9)0.0064 (10)0.0320 (7)0.0200 (9)
N10.040 (2)0.065 (3)0.044 (2)0.003 (2)0.009 (2)0.006 (2)
N20.060 (4)0.059 (3)0.083 (4)0.002 (3)0.002 (3)0.004 (3)
O10.057 (2)0.088 (2)0.0363 (19)0.001 (2)0.0039 (16)0.0121 (18)
O20.0591 (19)0.060 (2)0.0549 (19)0.0036 (19)0.0230 (16)0.0048 (18)
O30.073 (3)0.146 (4)0.067 (3)0.002 (3)0.003 (2)0.003 (3)
O40.056 (2)0.155 (4)0.124 (3)0.012 (3)0.016 (2)0.003 (3)
O50.063 (2)0.062 (2)0.067 (2)0.006 (2)0.0312 (18)0.0019 (18)
Geometric parameters (Å, º) top
C1—C61.382 (5)C12—C131.366 (5)
C1—C21.384 (6)C12—H120.9300
C1—H10.9300C13—H130.9300
C2—C31.366 (6)C14—O51.186 (5)
C2—H20.9300C14—O21.384 (5)
C3—C41.367 (5)C14—C151.510 (6)
C3—Cl11.742 (5)C15—C161.509 (5)
C4—C51.386 (5)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.388 (5)C16—C211.379 (5)
C5—H50.9300C16—C171.390 (5)
C6—C71.492 (6)C17—C181.370 (6)
C7—O11.209 (5)C17—H170.9300
C7—N11.367 (5)C18—C191.386 (6)
C8—C131.385 (5)C18—H180.9300
C8—C91.391 (5)C19—C201.369 (6)
C8—N11.419 (5)C19—H190.9300
C9—C101.386 (6)C20—C211.378 (5)
C9—Cl21.724 (5)C20—H200.9300
C10—C111.351 (6)C21—N21.474 (6)
C10—H100.9300N1—O21.426 (4)
C11—C121.381 (6)N2—O41.191 (5)
C11—H110.9300N2—O31.216 (4)
C6—C1—C2120.0 (4)C12—C13—H13119.8
C6—C1—H1120.0C8—C13—H13119.8
C2—C1—H1120.0O5—C14—O2124.9 (5)
C3—C2—C1119.8 (4)O5—C14—C15127.6 (4)
C3—C2—H2120.1O2—C14—C15107.5 (4)
C1—C2—H2120.1C16—C15—C14113.5 (4)
C2—C3—C4121.5 (4)C16—C15—H15A108.9
C2—C3—Cl1119.1 (4)C14—C15—H15A108.9
C4—C3—Cl1119.4 (4)C16—C15—H15B108.9
C3—C4—C5118.9 (4)C14—C15—H15B108.9
C3—C4—H4120.5H15A—C15—H15B107.7
C5—C4—H4120.5C21—C16—C17116.3 (4)
C4—C5—C6120.5 (4)C21—C16—C15125.5 (4)
C4—C5—H5119.7C17—C16—C15118.3 (4)
C6—C5—H5119.7C18—C17—C16122.2 (5)
C1—C6—C5119.3 (5)C18—C17—H17118.9
C1—C6—C7123.4 (5)C16—C17—H17118.9
C5—C6—C7117.2 (4)C17—C18—C19119.3 (5)
O1—C7—N1121.7 (4)C17—C18—H18120.4
O1—C7—C6121.5 (4)C19—C18—H18120.4
N1—C7—C6116.8 (4)C20—C19—C18120.5 (5)
C13—C8—C9119.1 (4)C20—C19—H19119.8
C13—C8—N1121.2 (4)C18—C19—H19119.8
C9—C8—N1119.6 (5)C19—C20—C21118.6 (5)
C10—C9—C8119.5 (5)C19—C20—H20120.7
C10—C9—Cl2120.1 (5)C21—C20—H20120.7
C8—C9—Cl2120.4 (4)C20—C21—C16123.2 (5)
C11—C10—C9120.5 (6)C20—C21—N2114.8 (5)
C11—C10—H10119.7C16—C21—N2122.0 (4)
C9—C10—H10119.7C7—N1—C8128.2 (4)
C10—C11—C12120.3 (6)C7—N1—O2114.5 (3)
C10—C11—H11119.8C8—N1—O2114.8 (3)
C12—C11—H11119.8O4—N2—O3122.0 (5)
C13—C12—C11120.1 (6)O4—N2—C21119.0 (5)
C13—C12—H12120.0O3—N2—C21118.9 (4)
C11—C12—H12120.0C14—O2—N1111.9 (3)
C12—C13—C8120.4 (4)
C6—C1—C2—C30.1 (7)C14—C15—C16—C17107.7 (5)
C1—C2—C3—C40.5 (7)C21—C16—C17—C180.7 (7)
C1—C2—C3—Cl1179.9 (3)C15—C16—C17—C18179.7 (4)
C2—C3—C4—C50.4 (7)C16—C17—C18—C191.6 (8)
Cl1—C3—C4—C5180.0 (3)C17—C18—C19—C201.3 (8)
C3—C4—C5—C60.3 (7)C18—C19—C20—C210.0 (8)
C2—C1—C6—C50.7 (6)C19—C20—C21—C161.0 (7)
C2—C1—C6—C7174.2 (4)C19—C20—C21—N2179.7 (4)
C4—C5—C6—C10.8 (6)C17—C16—C21—C200.6 (7)
C4—C5—C6—C7174.4 (4)C15—C16—C21—C20178.3 (4)
C1—C6—C7—O1134.5 (4)C17—C16—C21—N2179.3 (4)
C5—C6—C7—O140.6 (6)C15—C16—C21—N20.3 (7)
C1—C6—C7—N145.1 (5)O1—C7—N1—C8159.2 (4)
C5—C6—C7—N1139.9 (4)C6—C7—N1—C821.3 (6)
C13—C8—C9—C101.7 (6)O1—C7—N1—O21.6 (5)
N1—C8—C9—C10176.3 (4)C6—C7—N1—O2177.9 (3)
C13—C8—C9—Cl2179.5 (3)C13—C8—N1—C749.9 (6)
N1—C8—C9—Cl21.5 (6)C9—C8—N1—C7128.1 (4)
C8—C9—C10—C110.5 (7)C13—C8—N1—O2110.9 (4)
Cl2—C9—C10—C11178.4 (4)C9—C8—N1—O271.2 (5)
C9—C10—C11—C121.5 (8)C20—C21—N2—O49.7 (7)
C10—C11—C12—C132.5 (8)C16—C21—N2—O4169.1 (5)
C11—C12—C13—C81.3 (7)C20—C21—N2—O3169.2 (4)
C9—C8—C13—C120.8 (6)C16—C21—N2—O312.1 (7)
N1—C8—C13—C12177.2 (4)O5—C14—O2—N17.0 (6)
O5—C14—C15—C1623.1 (6)C15—C14—O2—N1171.7 (3)
O2—C14—C15—C16158.2 (3)C7—N1—O2—C1474.1 (4)
C14—C15—C16—C2173.3 (6)C8—N1—O2—C1489.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.383.264 (7)158
C15—H15B···O1ii0.972.453.421 (6)175
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.383.264 (7)158
C15—H15B···O1ii0.972.453.421 (6)175
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1.
Acknowledgements top

This work was supported by the Natural Science Fund Projects of Gansu Province (0710RJZA124).

references
References top

Ayyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938–941.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Noh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326–331.

Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Zeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213–1218.

Zhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.