supplementary materials


lh5538 scheme

Acta Cryst. (2012). E68, o3074    [ doi:10.1107/S1600536812041220 ]

N,N-Dibenzyl-O,O'-dimethyl thiophosphate

A. Raissi Shabari, F. Sabbaghi, M. Pourayoubi, M. Necas and M. Babiak

Abstract top

The P atom in the title compound, C16H20NO2PS, is bonded in a distorted tetrahedral P(S)(O)2N environment with the bond angles at the P atom in the range 99.37 (7) to 115.68 (5)°. The angles at the amido N atom (with bond-angle sum of 357.8°) confirm its sp2 character. The C-O-P bond angles are 119.78 (11) and 119.39 (12)°.

Comment top

The structure determination of the title compound (Fig. 1) was performed as a part of a project on the synthesis of a new phosphoramidothioate (Sabbaghi et al., 2012). The PS (1.9299 (6) Å), P—O (1.5796 (12) and 1.5961 (12) Å) and P—N (1.6343 (15) Å) bond lengths are within the expected values. The P atom has a distorted tetrahedral configuration (Fig. 1). The bond angles at the P atom vary in the range 99.37 (7) (O1—P1—O2) to 115.68 (5)° (O1—P1—S2). The nitrogen atom shows sp2 character with the average bond angle 119.3° with the C—N—C angle (114.98 (13) Å) contracted relative to the P—N—C angles (123.50 (11) and 119.30 (11) Å) similar to previously reported compounds with a P—N(CH2C6H5)2 fragment (Pourayoubi et al., 2012).

Related literature top

For a related phosphoramidothioate structure, see: Sabbaghi et al. (2012). For a structures with a P—N(CH2C6H5)2 fragment, see: Pourayoubi et al. (2012).

Experimental top

To a solution of dimethyl chlorothiophosphate, [CH3O]2P(S)Cl, (1.7 mmol) in dry CH3CN (30 ml), a solution of dibenzylamine (3.4 mmol) in the same solvent (5 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from methanol at room temperature. The single crystals, suitable for X-ray analysis were obtained from this solution after a few days at room temperature.

Refinement top

All carbon bound H atoms were placed in calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
(I) top
Crystal data top
C16H20NO2PSF(000) = 680
Mr = 321.36Dx = 1.345 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2953 reflections
a = 6.8377 (3) Åθ = 3.1–27.6°
b = 8.1115 (4) ŵ = 0.31 mm1
c = 28.6187 (16) ÅT = 120 K
V = 1587.31 (14) Å3Prism, colourless
Z = 40.75 × 0.55 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3010 independent reflections
Radiation source: Enhance (Mo) X-ray Source2747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8.4353 pixels mm-1θmax = 27.7°, θmin = 3.1°
ω scanh = 48
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 710
Tmin = 0.802, Tmax = 0.927l = 1837
4397 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3010 reflectionsΔρmax = 0.25 e Å3
192 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 982 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (7)
Crystal data top
C16H20NO2PSV = 1587.31 (14) Å3
Mr = 321.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8377 (3) ŵ = 0.31 mm1
b = 8.1115 (4) ÅT = 120 K
c = 28.6187 (16) Å0.75 × 0.55 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3010 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2747 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.927Rint = 0.014
4397 measured reflectionsθmax = 27.7°
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.31 e Å3
3010 reflectionsAbsolute structure: Flack (1983), 982 Friedel pairs
192 parametersFlack parameter: 0.04 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1193 (3)0.0377 (2)0.26315 (7)0.0250 (4)
H1A0.13390.09390.23300.037*
H1B0.24880.00890.27540.037*
H1C0.04200.06290.25890.037*
C20.2073 (3)0.0532 (2)0.40718 (7)0.0259 (4)
H2A0.34660.06090.41490.039*
H2B0.13720.00060.43310.039*
H2C0.15450.16400.40200.039*
C30.0215 (2)0.3937 (2)0.37593 (6)0.0155 (4)
H3A0.14220.37140.35790.019*
H3B0.04730.48690.36080.019*
C40.3118 (2)0.2750 (2)0.38807 (6)0.0150 (4)
H4A0.37800.16720.39180.018*
H4B0.31440.33120.41880.018*
C50.0757 (2)0.4412 (2)0.42528 (6)0.0159 (4)
C60.0174 (3)0.5705 (2)0.44800 (6)0.0200 (4)
H60.11800.62970.43240.024*
C70.0350 (3)0.6145 (2)0.49342 (7)0.0251 (4)
H70.02970.70310.50860.030*
C80.1815 (3)0.5286 (2)0.51624 (7)0.0245 (4)
H80.21670.55750.54730.029*
C90.2761 (3)0.4010 (2)0.49388 (7)0.0245 (4)
H90.37730.34260.50950.029*
C100.2240 (3)0.3574 (2)0.44868 (6)0.0200 (4)
H100.29030.26950.43350.024*
C110.4258 (2)0.3774 (2)0.35330 (6)0.0157 (4)
C120.4820 (3)0.3088 (2)0.31086 (6)0.0189 (4)
H120.44680.19820.30390.023*
C130.5879 (3)0.3985 (2)0.27863 (6)0.0215 (4)
H130.62420.35000.24970.026*
C140.6414 (3)0.5599 (2)0.28866 (6)0.0211 (4)
H140.71580.62170.26680.025*
C150.5860 (3)0.6299 (2)0.33044 (7)0.0223 (4)
H150.62120.74060.33720.027*
C160.4789 (3)0.5395 (2)0.36273 (7)0.0191 (4)
H160.44160.58870.39150.023*
N10.1058 (2)0.24562 (18)0.37470 (5)0.0143 (3)
O10.02041 (18)0.14624 (14)0.29598 (4)0.0176 (3)
O20.18301 (17)0.04395 (15)0.36533 (4)0.0186 (3)
P10.03212 (6)0.08173 (5)0.346520 (16)0.01436 (11)
S20.20827 (7)0.10397 (5)0.348938 (16)0.02011 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (10)0.0296 (10)0.0173 (10)0.0001 (9)0.0063 (9)0.0056 (8)
C20.0274 (10)0.0254 (10)0.0248 (10)0.0004 (9)0.0074 (9)0.0080 (8)
C30.0169 (8)0.0151 (8)0.0145 (9)0.0038 (8)0.0013 (7)0.0016 (7)
C40.0134 (8)0.0167 (8)0.0148 (9)0.0008 (7)0.0029 (8)0.0013 (7)
C50.0153 (8)0.0151 (9)0.0174 (9)0.0069 (7)0.0009 (7)0.0013 (7)
C60.0210 (9)0.0195 (9)0.0195 (10)0.0003 (8)0.0023 (8)0.0019 (8)
C70.0310 (10)0.0208 (9)0.0237 (10)0.0016 (9)0.0035 (9)0.0038 (8)
C80.0299 (10)0.0295 (10)0.0141 (9)0.0086 (9)0.0025 (9)0.0002 (8)
C90.0211 (9)0.0289 (10)0.0235 (10)0.0049 (9)0.0059 (8)0.0087 (9)
C100.0167 (8)0.0195 (9)0.0239 (10)0.0015 (7)0.0025 (8)0.0012 (8)
C110.0107 (7)0.0207 (9)0.0158 (9)0.0037 (7)0.0026 (7)0.0025 (8)
C120.0164 (8)0.0226 (9)0.0177 (10)0.0013 (8)0.0039 (8)0.0017 (7)
C130.0179 (8)0.0323 (10)0.0142 (9)0.0038 (9)0.0017 (7)0.0013 (9)
C140.0145 (8)0.0267 (10)0.0221 (10)0.0019 (8)0.0001 (8)0.0115 (8)
C150.0187 (9)0.0163 (9)0.0320 (11)0.0024 (8)0.0015 (8)0.0057 (8)
C160.0165 (8)0.0204 (9)0.0204 (9)0.0048 (8)0.0000 (8)0.0005 (8)
N10.0125 (6)0.0175 (7)0.0130 (8)0.0033 (6)0.0023 (6)0.0018 (6)
O10.0211 (6)0.0173 (6)0.0143 (6)0.0001 (5)0.0030 (6)0.0005 (5)
O20.0157 (6)0.0207 (6)0.0194 (6)0.0011 (5)0.0011 (5)0.0035 (5)
P10.01393 (19)0.0150 (2)0.0141 (2)0.00099 (17)0.00017 (19)0.00013 (19)
S20.0221 (2)0.0173 (2)0.0209 (2)0.00575 (18)0.0001 (2)0.0006 (2)
Geometric parameters (Å, º) top
C1—O11.455 (2)C7—H70.9500
C1—H1A0.9800C8—C91.378 (3)
C1—H1B0.9800C8—H80.9500
C1—H1C0.9800C9—C101.387 (3)
C2—O21.443 (2)C9—H90.9500
C2—H2A0.9800C10—H100.9500
C2—H2B0.9800C11—C161.390 (2)
C2—H2C0.9800C11—C121.390 (2)
C3—N11.483 (2)C12—C131.380 (3)
C3—C51.510 (2)C12—H120.9500
C3—H3A0.9900C13—C141.390 (3)
C3—H3B0.9900C13—H130.9500
C4—N11.479 (2)C14—C151.377 (3)
C4—C111.513 (2)C14—H140.9500
C4—H4A0.9900C15—C161.389 (3)
C4—H4B0.9900C15—H150.9500
C5—C61.389 (2)C16—H160.9500
C5—C101.392 (2)N1—P11.6343 (15)
C6—C71.395 (3)O1—P11.5796 (12)
C6—H60.9500O2—P11.5961 (12)
C7—C81.384 (3)P1—S21.9299 (6)
O1—C1—H1A109.5C8—C9—C10120.25 (18)
O1—C1—H1B109.5C8—C9—H9119.9
H1A—C1—H1B109.5C10—C9—H9119.9
O1—C1—H1C109.5C9—C10—C5120.73 (18)
H1A—C1—H1C109.5C9—C10—H10119.6
H1B—C1—H1C109.5C5—C10—H10119.6
O2—C2—H2A109.5C16—C11—C12118.45 (16)
O2—C2—H2B109.5C16—C11—C4121.75 (16)
H2A—C2—H2B109.5C12—C11—C4119.79 (16)
O2—C2—H2C109.5C13—C12—C11121.18 (18)
H2A—C2—H2C109.5C13—C12—H12119.4
H2B—C2—H2C109.5C11—C12—H12119.4
N1—C3—C5111.89 (13)C12—C13—C14119.78 (18)
N1—C3—H3A109.2C12—C13—H13120.1
C5—C3—H3A109.2C14—C13—H13120.1
N1—C3—H3B109.2C15—C14—C13119.71 (17)
C5—C3—H3B109.2C15—C14—H14120.1
H3A—C3—H3B107.9C13—C14—H14120.1
N1—C4—C11114.15 (14)C14—C15—C16120.36 (17)
N1—C4—H4A108.7C14—C15—H15119.8
C11—C4—H4A108.7C16—C15—H15119.8
N1—C4—H4B108.7C15—C16—C11120.51 (17)
C11—C4—H4B108.7C15—C16—H16119.7
H4A—C4—H4B107.6C11—C16—H16119.7
C6—C5—C10118.53 (17)C4—N1—C3114.98 (13)
C6—C5—C3121.21 (16)C4—N1—P1123.50 (11)
C10—C5—C3120.26 (17)C3—N1—P1119.30 (11)
C5—C6—C7120.77 (17)C1—O1—P1119.78 (11)
C5—C6—H6119.6C2—O2—P1119.39 (12)
C7—C6—H6119.6O1—P1—O299.37 (7)
C8—C7—C6119.81 (18)O1—P1—N1104.62 (7)
C8—C7—H7120.1O2—P1—N1105.89 (7)
C6—C7—H7120.1O1—P1—S2115.68 (5)
C9—C8—C7119.91 (18)O2—P1—S2114.41 (5)
C9—C8—H8120.0N1—P1—S2115.14 (6)
C7—C8—H8120.0
N1—C3—C5—C6101.64 (19)C12—C11—C16—C150.2 (2)
N1—C3—C5—C1079.63 (19)C4—C11—C16—C15179.07 (16)
C10—C5—C6—C70.6 (3)C11—C4—N1—C368.76 (18)
C3—C5—C6—C7179.38 (16)C11—C4—N1—P194.17 (17)
C5—C6—C7—C80.0 (3)C5—C3—N1—C475.77 (18)
C6—C7—C8—C90.6 (3)C5—C3—N1—P1120.53 (14)
C7—C8—C9—C100.5 (3)C1—O1—P1—O261.56 (14)
C8—C9—C10—C50.1 (3)C1—O1—P1—N1170.81 (13)
C6—C5—C10—C90.7 (3)C1—O1—P1—S261.40 (14)
C3—C5—C10—C9179.47 (16)C2—O2—P1—O1166.17 (12)
N1—C4—C11—C16107.68 (18)C2—O2—P1—N185.59 (14)
N1—C4—C11—C1273.1 (2)C2—O2—P1—S242.31 (14)
C16—C11—C12—C130.0 (3)C4—N1—P1—O1108.86 (14)
C4—C11—C12—C13179.28 (16)C3—N1—P1—O153.38 (13)
C11—C12—C13—C140.5 (3)C4—N1—P1—O2146.71 (13)
C12—C13—C14—C150.8 (3)C3—N1—P1—O251.06 (14)
C13—C14—C15—C160.7 (3)C4—N1—P1—S219.25 (16)
C14—C15—C16—C110.1 (3)C3—N1—P1—S2178.52 (10)
Acknowledgements top

Support of this investigation by the Islamic Azad University, North Tehran Branch, is gratefully acknowledged.

references
References top

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Pourayoubi, M., Jasinski, J. P., Shoghpour Bayraq, S., Eshghi, H., Keeley, A. C., Bruno, G. & Amiri Rudbari, H. (2012). Acta Cryst. C68, o399–o404.

Sabbaghi, F., Pourayoubi, M. & Nečas, M. (2012). Acta Cryst. E68, o2891.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.