metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1408-m1409

Di-μ-carbonyl-bis­­[bis­­(tri­phenyl­phos­phane)rhodium(0)](RhRh) acetone disolvate1

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 1 October 2012; accepted 19 October 2012; online 27 October 2012)

The dirhodium complex, [Rh2(C18H15P)4(CO)2]·2(CH3)2CO, has crystallographic twofold symmetry and the Rh—Rh distance is 2.6266 (8) Å. The four atoms proximate to each Rh atom [Rh—P = 2.3222 (7) and 2.3283 (8) Å, and Rh—C = 1.961 (3) and 2.045 (3) Å] form a distorted tetra­hedron with large deviations from the putative tetra­hedral angles [r.m.s. deviation = 23 (1)°]. The six angles more closely approximate those of a trigonal bipyramid [r.m.s. deviation = 14 (1)°] with one missing equatorial ligand. The two bridging carbonyl ligands are much more linearly coordinated to one Rh [Rh—C≡O = 151.0 (2)°] than to the other [127.0 (2)°], and the two Rh2CO planes form a dihedral angle of 45.43 (5)°. The two acetone solvent mol­ecules are disordered, and their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For other dirhodium complex structures, see CCDC Refcode QAFHEM: Dzik et al. (2010[Dzik, W. I., Creusen, C., de Gelder, R., Peters, T. P. J., Smits, J. M. M. & de Bruin, B. (2010). Organometallics, 29, 1629-1641.]), YOSMEZ: Okazaki et al. (2009[Okazaki, M., Hayashi, A., Fu, C. F., Liu, S. T. & Ozawa, F. (2009). Organometallics, 28, 902-908.]), DEFJII: Douglas et al. (2005[Douglas, S., Lowe, J. P., Mahon, M. F., Warren, J. E. & Whittlesey, M. K. (2005). J. Organomet. Chem. 690, 5027-5035.]), TPCDRH10: Singh et al. (1973[Singh, P., Dammann, C. B. & Hodgson, D. J. (1973). Inorg. Chem. 12, 1335-1339.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the use of SQUEEZE, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C18H15P)4(CO)2]·2C3H6O

  • Mr = 1427.16

  • Monoclinic, C 2/c

  • a = 23.535 (3) Å

  • b = 13.0758 (11) Å

  • c = 24.650 (2) Å

  • β = 115.67 (2)°

  • V = 6837.1 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 298 K

  • 0.38 × 0.38 × 0.23 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.797, Tmax = 0.869

  • 6874 measured reflections

  • 6718 independent reflections

  • 5170 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 3 reflections intensity decay: 4.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.03

  • 6718 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SQUEEZE in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The dirhodium complex (I), (Rh(CO)(PPh3)2)2, is a precursor for HRh(CO)2(PPh3)2, a hydroformylation catalyst. A less precise crystal structure of I, as the dichloromethane solvate, was reported by Singh et al. (1973). In both solvates, the complex lies on a crystallographic twofold axis, with Rh—Rh = 2.6266 (8) Å (Singh et al.: 2.630 (1) Å). The four atoms proximate to Rh (Rh—P1 = 2.3222 (7), Rh—P2 = 2.3283 (8), Rh—C40 = 1.961 (3), Rh—C40' = 2.045 (3) Å) form a distorted tetrahedron, but the six angles deviate markedly from the ideal tetrahedral angle (δr.m.s. = 23 (1)°). The angles approximate more closely those of a trigonal bipyramid (δr.m.s. = 14 (1)°), with P1 and C40 in axial and P2 and C40' in equatorial positions, wth one equatorial position vacant. The two bridging carbonyl ligands do not lie in the same plane, the two Rh2CO planes forming a dihedral angle of 45.43 (5)°. Furthermore, each carbonyl is asymmetrically coordinated to the two Rh atoms, with a Rh—C distance of 1.961 (3) Å and Rh—CO angle 151.0 (2)° to one Rh, 2.045 (3) Å and 127.0 (2)° to the other. This asymmetric carbonyl bridging is also seen in the DCM solvate structure (Singh et al., 1973).

Related literature top

For other dirhodium complex structures, see CCDC Refcode QAFHEM: Dzik et al. (2010), YOSMEZ: Okazaki et al. (2009), DEFJII: Douglas et al. (2005), TPCDRH10: Singh et al. (1973). For a description of the Cambridge Structural Database, see: Allen (2002). For the use of SQUEEZE, see: Spek (2009).

Experimental top

Rh2(CO)2(PPh3)4 was synthesized from Rh(acac)(CO)2 and excess triphenylphosphine under hydroformylation conditions, with acetone as solvent: A small autoclave was charged with a solution of Rh(acac)(CO)2 (0.010 g), PPh3 (9.750 g), and 1-hexene 7.883 g) in acetone (40 ml) while inside a glovebox. The autoclave was sealed, removed from the glovebox, and placed in a heating mantle. The headspace of the autoclave was purged with syn gas (1:1 H2:CO, 3 x 60psig purges), and pressurized to 60psig with syn gas. The vessel was heated to 80°C and the syn gas pressure was adjusted to 80psig. After 18 h, the vessel was depressurized and purged with nitrogen (3x 60psig). The reaction mixture was analyzed with 1H NMR: 91% aldehydes, 6.7% olefin isomerization, 2.2% 1-hexene. The n/i ratio of the aldehydes were 13.6. The reaction mixture slowly concentrated upon sitting in a glove box to afford a few red crystals of (I).

Refinement top

Each cavity (estimated volume 288 Å3) associated with a dirhodium molecule contains two disordered acetone molecules, for which no reasonable model could be developed. Therefore, the observed structure amplitudes were modified by PLATON/SQUEEZE (Spek, 2009) to subtract the scattering contribution of the electron density found in each cavity.

All H atoms were placed in calculated positions, with C(sp3)—H = 0.96 Å, Uiso(H) = 1.5Ueq(C), and C(sp2)—H = 0.93 Å, Uiso(H) = 1.2Ueq(C), and thereafter allowed to ride the attached C atom.

Structure description top

The dirhodium complex (I), (Rh(CO)(PPh3)2)2, is a precursor for HRh(CO)2(PPh3)2, a hydroformylation catalyst. A less precise crystal structure of I, as the dichloromethane solvate, was reported by Singh et al. (1973). In both solvates, the complex lies on a crystallographic twofold axis, with Rh—Rh = 2.6266 (8) Å (Singh et al.: 2.630 (1) Å). The four atoms proximate to Rh (Rh—P1 = 2.3222 (7), Rh—P2 = 2.3283 (8), Rh—C40 = 1.961 (3), Rh—C40' = 2.045 (3) Å) form a distorted tetrahedron, but the six angles deviate markedly from the ideal tetrahedral angle (δr.m.s. = 23 (1)°). The angles approximate more closely those of a trigonal bipyramid (δr.m.s. = 14 (1)°), with P1 and C40 in axial and P2 and C40' in equatorial positions, wth one equatorial position vacant. The two bridging carbonyl ligands do not lie in the same plane, the two Rh2CO planes forming a dihedral angle of 45.43 (5)°. Furthermore, each carbonyl is asymmetrically coordinated to the two Rh atoms, with a Rh—C distance of 1.961 (3) Å and Rh—CO angle 151.0 (2)° to one Rh, 2.045 (3) Å and 127.0 (2)° to the other. This asymmetric carbonyl bridging is also seen in the DCM solvate structure (Singh et al., 1973).

For other dirhodium complex structures, see CCDC Refcode QAFHEM: Dzik et al. (2010), YOSMEZ: Okazaki et al. (2009), DEFJII: Douglas et al. (2005), TPCDRH10: Singh et al. (1973). For a description of the Cambridge Structural Database, see: Allen (2002). For the use of SQUEEZE, see: Spek (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SQUEEZE in PLATON (Spek, 2009); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). Unlabeled atoms are related by the symmetry operator (-x+2, y, -z+3/2).
Di-µ-carbonyl-bis[bis(triphenylphosphane)rhodium(0)](RhRh) acetone disolvate top
Crystal data top
[Rh2(C18H15P)4(CO)2]·2C3H6OF(000) = 2936
Mr = 1427.16Dx = 1.386 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 23.535 (3) Åθ = 2.6–27.5°
b = 13.0758 (11) ŵ = 0.63 mm1
c = 24.650 (2) ÅT = 298 K
β = 115.67 (2)°Prism, red
V = 6837.1 (16) Å30.38 × 0.38 × 0.23 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
5170 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
θ/2θ scansh = 028
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.797, Tmax = 0.869l = 3027
6874 measured reflections3 standard reflections every 3 reflections
6718 independent reflections intensity decay: 4.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.3727P]
where P = (Fo2 + 2Fc2)/3
6718 reflections(Δ/σ)max = 0.003
370 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.27 e Å3
0 constraints
Crystal data top
[Rh2(C18H15P)4(CO)2]·2C3H6OV = 6837.1 (16) Å3
Mr = 1427.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.535 (3) ŵ = 0.63 mm1
b = 13.0758 (11) ÅT = 298 K
c = 24.650 (2) Å0.38 × 0.38 × 0.23 mm
β = 115.67 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5170 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.797, Tmax = 0.8693 standard reflections every 3 reflections
6874 measured reflections intensity decay: 4.0%
6718 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
6718 reflectionsΔρmin = 0.27 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.88187 (3)0.11053 (5)0.72824 (3)0.03726 (16)
C10.81798 (13)0.0719 (2)0.74770 (11)0.0410 (6)
C20.80127 (16)0.0298 (2)0.74235 (14)0.0549 (8)
H20.82290.07680.730.066*
C30.7526 (2)0.0623 (3)0.75522 (17)0.0752 (11)
H30.74190.13130.75180.09*
C40.71999 (19)0.0065 (3)0.77297 (17)0.0768 (11)
H40.68650.01550.78040.092*
C50.73669 (16)0.1068 (3)0.77967 (14)0.0621 (9)
H50.71480.15340.7920.075*
C60.78618 (15)0.1396 (2)0.76812 (13)0.0524 (7)
H60.79830.20790.77410.063*
C70.84532 (13)0.19569 (19)0.66282 (12)0.0411 (6)
C80.87874 (15)0.2110 (2)0.62867 (14)0.0547 (8)
H80.91770.17970.63980.066*
C90.85363 (17)0.2730 (3)0.57799 (15)0.0671 (10)
H90.87560.28240.55480.081*
C100.79721 (18)0.3200 (3)0.56208 (15)0.0706 (10)
H100.78110.36250.52850.085*
C110.76397 (18)0.3051 (3)0.59513 (16)0.0694 (10)
H110.72490.33630.58350.083*
C120.78835 (15)0.2437 (2)0.64586 (13)0.0560 (8)
H120.76590.23490.66860.067*
C130.92309 (13)0.2033 (2)0.78900 (12)0.0436 (6)
C140.93637 (16)0.3018 (2)0.77782 (15)0.0613 (9)
H140.92450.32340.73840.074*
C150.96749 (18)0.3687 (3)0.82533 (18)0.0770 (11)
H150.97690.43450.81740.092*
C160.98448 (17)0.3396 (3)0.88318 (17)0.0736 (11)
H161.00410.38560.91460.088*
C170.97239 (17)0.2422 (3)0.89466 (15)0.0717 (10)
H170.98470.22130.93420.086*
C180.94185 (15)0.1738 (3)0.84792 (14)0.0585 (8)
H180.9340.10740.85640.07*
P20.86831 (3)0.09673 (5)0.62360 (3)0.03564 (16)
C190.88124 (12)0.2359 (2)0.63031 (12)0.0401 (6)
C200.90876 (14)0.2779 (2)0.68686 (13)0.0521 (8)
H200.92360.23520.72030.063*
C210.91480 (16)0.3830 (2)0.69503 (15)0.0636 (9)
H210.93340.41010.73370.076*
C220.89343 (16)0.4465 (2)0.64633 (17)0.0654 (9)
H220.89710.5170.65180.079*
C230.86680 (18)0.4065 (3)0.58989 (17)0.0717 (10)
H230.85260.44990.55670.086*
C240.86062 (16)0.3016 (2)0.58135 (14)0.0593 (8)
H240.84250.2750.54250.071*
C250.78347 (12)0.0915 (2)0.60350 (11)0.0398 (6)
C260.74864 (14)0.1729 (2)0.60884 (13)0.0523 (7)
H260.76790.23620.62140.063*
C270.68550 (16)0.1614 (3)0.59578 (16)0.0680 (9)
H270.66280.21710.59950.082*
C280.65644 (16)0.0694 (3)0.57752 (16)0.0685 (10)
H280.61430.06190.56970.082*
C290.68964 (15)0.0129 (3)0.57065 (15)0.0597 (8)
H290.66960.07550.55740.072*
C300.75280 (14)0.0021 (2)0.58356 (13)0.0470 (7)
H300.7750.05770.57890.056*
C310.86728 (13)0.0638 (2)0.55073 (12)0.0414 (6)
C320.81587 (15)0.0855 (2)0.49619 (12)0.0545 (8)
H320.78090.11870.49620.065*
C330.81608 (19)0.0587 (3)0.44229 (14)0.0676 (10)
H330.78150.07450.40630.081*
C340.8669 (2)0.0088 (3)0.44120 (16)0.0728 (11)
H340.86730.00830.40470.087*
C350.9171 (2)0.0156 (3)0.49460 (19)0.0835 (12)
H350.95140.05030.49420.1*
C360.91725 (16)0.0110 (3)0.54926 (15)0.0639 (9)
H360.95130.0070.58510.077*
Rh10.941218 (9)0.013747 (14)0.708963 (9)0.03409 (7)
C401.01769 (13)0.0593 (2)0.70298 (12)0.0435 (7)
O401.04318 (10)0.09216 (19)0.67507 (10)0.0660 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0398 (4)0.0314 (3)0.0343 (3)0.0018 (3)0.0101 (3)0.0004 (3)
C10.0425 (15)0.0420 (16)0.0325 (13)0.0010 (12)0.0106 (12)0.0010 (11)
C20.072 (2)0.0469 (18)0.0517 (18)0.0104 (15)0.0326 (16)0.0081 (14)
C30.094 (3)0.064 (2)0.081 (3)0.031 (2)0.051 (2)0.015 (2)
C40.075 (3)0.101 (3)0.071 (2)0.027 (2)0.048 (2)0.016 (2)
C50.063 (2)0.078 (2)0.0519 (19)0.0085 (18)0.0311 (17)0.0064 (17)
C60.0587 (19)0.0476 (17)0.0506 (17)0.0074 (14)0.0234 (15)0.0024 (14)
C70.0443 (15)0.0309 (13)0.0369 (14)0.0001 (11)0.0071 (12)0.0004 (11)
C80.0515 (18)0.0554 (19)0.0513 (18)0.0051 (15)0.0169 (15)0.0078 (14)
C90.074 (2)0.068 (2)0.0511 (19)0.0114 (19)0.0190 (17)0.0148 (17)
C100.080 (3)0.056 (2)0.0483 (19)0.0008 (19)0.0029 (18)0.0171 (16)
C110.072 (2)0.059 (2)0.063 (2)0.0199 (18)0.0158 (19)0.0109 (17)
C120.061 (2)0.0533 (19)0.0499 (17)0.0183 (15)0.0205 (15)0.0082 (14)
C130.0429 (15)0.0394 (15)0.0425 (15)0.0003 (12)0.0129 (13)0.0071 (12)
C140.067 (2)0.0473 (18)0.0561 (19)0.0123 (16)0.0140 (16)0.0040 (15)
C150.081 (3)0.049 (2)0.079 (3)0.0132 (19)0.014 (2)0.0149 (19)
C160.063 (2)0.067 (2)0.073 (3)0.0084 (18)0.0131 (19)0.035 (2)
C170.071 (2)0.084 (3)0.0462 (19)0.000 (2)0.0128 (17)0.0166 (18)
C180.067 (2)0.0502 (18)0.0500 (18)0.0006 (16)0.0172 (16)0.0045 (14)
P20.0333 (3)0.0350 (4)0.0313 (3)0.0018 (3)0.0071 (3)0.0008 (3)
C190.0349 (14)0.0352 (14)0.0426 (15)0.0018 (11)0.0097 (11)0.0019 (11)
C200.0530 (18)0.0422 (16)0.0472 (17)0.0042 (14)0.0087 (14)0.0011 (13)
C210.067 (2)0.0438 (18)0.062 (2)0.0012 (16)0.0106 (16)0.0124 (15)
C220.066 (2)0.0346 (16)0.087 (3)0.0006 (15)0.025 (2)0.0032 (17)
C230.088 (3)0.0410 (18)0.075 (2)0.0024 (17)0.025 (2)0.0164 (17)
C240.072 (2)0.0459 (18)0.0479 (18)0.0008 (16)0.0146 (16)0.0047 (14)
C250.0343 (14)0.0432 (15)0.0334 (13)0.0033 (11)0.0067 (11)0.0032 (11)
C260.0454 (17)0.0526 (18)0.0557 (18)0.0042 (14)0.0188 (15)0.0013 (14)
C270.051 (2)0.075 (2)0.082 (2)0.0142 (18)0.0320 (19)0.0062 (19)
C280.0387 (17)0.086 (3)0.076 (2)0.0043 (18)0.0207 (17)0.012 (2)
C290.0460 (17)0.060 (2)0.064 (2)0.0115 (15)0.0156 (15)0.0076 (16)
C300.0418 (15)0.0487 (17)0.0435 (15)0.0005 (13)0.0118 (12)0.0039 (12)
C310.0430 (15)0.0404 (15)0.0372 (14)0.0042 (12)0.0141 (12)0.0014 (11)
C320.062 (2)0.0548 (18)0.0376 (15)0.0089 (15)0.0132 (14)0.0042 (13)
C330.092 (3)0.063 (2)0.0361 (16)0.003 (2)0.0164 (17)0.0008 (15)
C340.096 (3)0.081 (3)0.051 (2)0.026 (2)0.040 (2)0.0163 (18)
C350.071 (3)0.111 (3)0.080 (3)0.006 (2)0.044 (2)0.027 (2)
C360.0499 (18)0.085 (3)0.0538 (19)0.0008 (17)0.0195 (15)0.0136 (17)
Rh10.03109 (11)0.03049 (11)0.03132 (11)0.00057 (8)0.00472 (8)0.00033 (8)
C400.0425 (16)0.0366 (14)0.0378 (14)0.0003 (12)0.0047 (12)0.0054 (12)
O400.0493 (13)0.0884 (17)0.0531 (13)0.0058 (12)0.0154 (11)0.0280 (12)
Geometric parameters (Å, º) top
P1—C11.836 (3)P2—Rh12.3283 (8)
P1—C71.838 (3)C19—C201.372 (4)
P1—C131.843 (3)C19—C241.386 (4)
P1—Rh12.3222 (7)C20—C211.387 (4)
C1—C21.376 (4)C20—H200.93
C1—C61.387 (4)C21—C221.364 (5)
C2—C31.382 (5)C21—H210.93
C2—H20.93C22—C231.359 (5)
C3—C41.372 (5)C22—H220.93
C3—H30.93C23—C241.386 (4)
C4—C51.359 (5)C23—H230.93
C4—H40.93C24—H240.93
C5—C61.382 (4)C25—C261.384 (4)
C5—H50.93C25—C301.397 (4)
C6—H60.93C26—C271.386 (4)
C7—C121.372 (4)C26—H260.93
C7—C81.393 (4)C27—C281.361 (5)
C8—C91.389 (4)C27—H270.93
C8—H80.93C28—C291.383 (5)
C9—C101.358 (5)C28—H280.93
C9—H90.93C29—C301.386 (4)
C10—C111.366 (5)C29—H290.93
C10—H100.93C30—H300.93
C11—C121.384 (4)C31—C361.377 (4)
C11—H110.93C31—C321.394 (4)
C12—H120.93C32—C331.376 (4)
C13—C181.378 (4)C32—H320.93
C13—C141.381 (4)C33—C341.373 (5)
C14—C151.389 (4)C33—H330.93
C14—H140.93C34—C351.372 (6)
C15—C161.358 (5)C34—H340.93
C15—H150.93C35—C361.390 (5)
C16—C171.361 (5)C35—H350.93
C16—H160.93C36—H360.93
C17—C181.388 (4)Rh1—C401.961 (3)
C17—H170.93Rh1—C40i2.045 (3)
C18—H180.93Rh1—Rh1i2.6266 (8)
P2—C311.837 (3)C40—O401.173 (3)
P2—C251.838 (3)C40—Rh1i2.045 (3)
P2—C191.841 (3)
C1—P1—C7105.72 (13)C20—C19—P2118.3 (2)
C1—P1—C1399.86 (13)C24—C19—P2123.5 (2)
C7—P1—C13101.28 (12)C19—C20—C21121.2 (3)
C1—P1—Rh1119.62 (9)C19—C20—H20119.4
C7—P1—Rh1109.80 (9)C21—C20—H20119.4
C13—P1—Rh1118.38 (9)C22—C21—C20120.0 (3)
C2—C1—C6118.3 (3)C22—C21—H21120
C2—C1—P1118.2 (2)C20—C21—H21120
C6—C1—P1123.4 (2)C23—C22—C21119.8 (3)
C1—C2—C3120.4 (3)C23—C22—H22120.1
C1—C2—H2119.8C21—C22—H22120.1
C3—C2—H2119.8C22—C23—C24120.5 (3)
C4—C3—C2120.3 (3)C22—C23—H23119.7
C4—C3—H3119.8C24—C23—H23119.7
C2—C3—H3119.8C19—C24—C23120.4 (3)
C5—C4—C3120.0 (3)C19—C24—H24119.8
C5—C4—H4120C23—C24—H24119.8
C3—C4—H4120C26—C25—C30118.0 (3)
C4—C5—C6120.0 (3)C26—C25—P2124.4 (2)
C4—C5—H5120C30—C25—P2117.6 (2)
C6—C5—H5120C25—C26—C27121.0 (3)
C5—C6—C1120.8 (3)C25—C26—H26119.5
C5—C6—H6119.6C27—C26—H26119.5
C1—C6—H6119.6C28—C27—C26120.5 (3)
C12—C7—C8118.9 (3)C28—C27—H27119.8
C12—C7—P1124.7 (2)C26—C27—H27119.8
C8—C7—P1116.4 (2)C27—C28—C29119.9 (3)
C9—C8—C7119.7 (3)C27—C28—H28120
C9—C8—H8120.1C29—C28—H28120
C7—C8—H8120.1C28—C29—C30119.9 (3)
C10—C9—C8120.4 (3)C28—C29—H29120
C10—C9—H9119.8C30—C29—H29120
C8—C9—H9119.8C29—C30—C25120.6 (3)
C9—C10—C11120.3 (3)C29—C30—H30119.7
C9—C10—H10119.9C25—C30—H30119.7
C11—C10—H10119.9C36—C31—C32118.1 (3)
C10—C11—C12120.1 (3)C36—C31—P2119.6 (2)
C10—C11—H11120C32—C31—P2122.2 (2)
C12—C11—H11120C33—C32—C31121.0 (3)
C7—C12—C11120.6 (3)C33—C32—H32119.5
C7—C12—H12119.7C31—C32—H32119.5
C11—C12—H12119.7C34—C33—C32120.5 (3)
C18—C13—C14118.4 (3)C34—C33—H33119.7
C18—C13—P1119.2 (2)C32—C33—H33119.7
C14—C13—P1122.5 (2)C35—C34—C33119.1 (3)
C13—C14—C15120.1 (3)C35—C34—H34120.4
C13—C14—H14120C33—C34—H34120.4
C15—C14—H14120C34—C35—C36120.8 (4)
C16—C15—C14121.1 (3)C34—C35—H35119.6
C16—C15—H15119.4C36—C35—H35119.6
C14—C15—H15119.4C31—C36—C35120.4 (3)
C15—C16—C17119.2 (3)C31—C36—H36119.8
C15—C16—H16120.4C35—C36—H36119.8
C17—C16—H16120.4C40—Rh1—C40i87.93 (14)
C16—C17—C18120.7 (3)C40—Rh1—P1151.76 (8)
C16—C17—H17119.7C40i—Rh1—P192.09 (9)
C18—C17—H17119.7C40—Rh1—P297.56 (8)
C13—C18—C17120.6 (3)C40i—Rh1—P2130.38 (8)
C13—C18—H18119.7P1—Rh1—P2103.76 (3)
C17—C18—H18119.7C40—Rh1—Rh1i50.44 (8)
C31—P2—C25100.08 (12)C40i—Rh1—Rh1i47.66 (8)
C31—P2—C19104.56 (13)P1—Rh1—Rh1i111.635 (19)
C25—P2—C19100.32 (12)P2—Rh1—Rh1i144.50 (2)
C31—P2—Rh1117.82 (9)O40—C40—Rh1151.0 (2)
C25—P2—Rh1121.02 (9)O40—C40—Rh1i127.0 (2)
C19—P2—Rh1110.55 (8)Rh1—C40—Rh1i81.90 (11)
C20—C19—C24118.0 (3)
C7—P1—C1—C2115.7 (2)Rh1—P2—C25—C26107.8 (2)
C13—P1—C1—C2139.5 (2)C31—P2—C25—C3061.5 (2)
Rh1—P1—C1—C28.7 (3)C19—P2—C25—C30168.5 (2)
C7—P1—C1—C665.1 (3)Rh1—P2—C25—C3069.8 (2)
C13—P1—C1—C639.7 (3)C30—C25—C26—C271.1 (4)
Rh1—P1—C1—C6170.5 (2)P2—C25—C26—C27176.5 (2)
C6—C1—C2—C32.1 (5)C25—C26—C27—C280.2 (5)
P1—C1—C2—C3178.6 (3)C26—C27—C28—C291.4 (6)
C1—C2—C3—C40.6 (6)C27—C28—C29—C301.3 (5)
C2—C3—C4—C51.9 (6)C28—C29—C30—C250.0 (5)
C3—C4—C5—C60.5 (6)C26—C25—C30—C291.1 (4)
C4—C5—C6—C12.2 (5)P2—C25—C30—C29176.6 (2)
C2—C1—C6—C53.5 (4)C25—P2—C31—C36148.2 (3)
P1—C1—C6—C5177.3 (2)C19—P2—C31—C36108.3 (3)
C1—P1—C7—C1218.3 (3)Rh1—P2—C31—C3614.9 (3)
C13—P1—C7—C1285.5 (3)C25—P2—C31—C3228.3 (3)
Rh1—P1—C7—C12148.6 (2)C19—P2—C31—C3275.2 (3)
C1—P1—C7—C8161.5 (2)Rh1—P2—C31—C32161.6 (2)
C13—P1—C7—C894.8 (2)C36—C31—C32—C332.6 (5)
Rh1—P1—C7—C831.2 (2)P2—C31—C32—C33179.1 (3)
C12—C7—C8—C90.8 (4)C31—C32—C33—C340.7 (5)
P1—C7—C8—C9179.0 (2)C32—C33—C34—C351.1 (6)
C7—C8—C9—C101.0 (5)C33—C34—C35—C361.0 (6)
C8—C9—C10—C111.3 (6)C32—C31—C36—C352.7 (5)
C9—C10—C11—C121.4 (6)P2—C31—C36—C35179.3 (3)
C8—C7—C12—C111.0 (5)C34—C35—C36—C311.0 (6)
P1—C7—C12—C11178.8 (2)C1—P1—Rh1—C40158.53 (19)
C10—C11—C12—C71.3 (5)C7—P1—Rh1—C4079.1 (2)
C1—P1—C13—C1853.5 (3)C13—P1—Rh1—C4036.5 (2)
C7—P1—C13—C18161.9 (3)C1—P1—Rh1—C40i69.02 (13)
Rh1—P1—C13—C1878.1 (3)C7—P1—Rh1—C40i168.58 (12)
C1—P1—C13—C14126.8 (3)C13—P1—Rh1—C40i53.06 (13)
C7—P1—C13—C1418.5 (3)C1—P1—Rh1—P263.55 (10)
Rh1—P1—C13—C14101.5 (3)C7—P1—Rh1—P258.85 (9)
C18—C13—C14—C150.5 (5)C13—P1—Rh1—P2174.37 (11)
P1—C13—C14—C15179.9 (3)C1—P1—Rh1—Rh1i113.74 (9)
C13—C14—C15—C161.1 (6)C7—P1—Rh1—Rh1i123.86 (9)
C14—C15—C16—C172.0 (6)C13—P1—Rh1—Rh1i8.34 (11)
C15—C16—C17—C181.4 (6)C31—P2—Rh1—C4059.88 (13)
C14—C13—C18—C171.1 (5)C25—P2—Rh1—C40176.87 (13)
P1—C13—C18—C17179.3 (3)C19—P2—Rh1—C4060.21 (13)
C16—C17—C18—C130.2 (5)C31—P2—Rh1—C40i153.61 (15)
C31—P2—C19—C20154.4 (2)C25—P2—Rh1—C40i83.14 (15)
C25—P2—C19—C20102.2 (2)C19—P2—Rh1—C40i33.52 (15)
Rh1—P2—C19—C2026.6 (3)C31—P2—Rh1—P1101.46 (10)
C31—P2—C19—C2430.4 (3)C25—P2—Rh1—P121.78 (11)
C25—P2—C19—C2473.0 (3)C19—P2—Rh1—P1138.45 (10)
Rh1—P2—C19—C24158.1 (2)C31—P2—Rh1—Rh1i82.89 (11)
C24—C19—C20—C211.2 (5)C25—P2—Rh1—Rh1i153.87 (10)
P2—C19—C20—C21174.3 (3)C19—P2—Rh1—Rh1i37.21 (11)
C19—C20—C21—C220.3 (5)C40i—Rh1—C40—O40150.3 (5)
C20—C21—C22—C230.6 (6)P1—Rh1—C40—O40119.1 (5)
C21—C22—C23—C240.6 (6)P2—Rh1—C40—O4019.8 (5)
C20—C19—C24—C231.2 (5)Rh1i—Rh1—C40—O40177.3 (6)
P2—C19—C24—C23174.0 (3)C40i—Rh1—C40—Rh1i32.40 (14)
C22—C23—C24—C190.3 (6)P1—Rh1—C40—Rh1i58.2 (2)
C31—P2—C25—C26120.9 (3)P2—Rh1—C40—Rh1i162.88 (6)
C19—P2—C25—C2613.9 (3)
Symmetry code: (i) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Rh2(C18H15P)4(CO)2]·2C3H6O
Mr1427.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)23.535 (3), 13.0758 (11), 24.650 (2)
β (°) 115.67 (2)
V3)6837.1 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.38 × 0.38 × 0.23
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.797, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
6874, 6718, 5170
Rint0.026
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.03
No. of reflections6718
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008) and SQUEEZE in PLATON (Spek, 2009), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

1CAS 47921–72–2, 48246–55–5.

Current address: School of Natural Sciences, University of California, Merced, 5200 North Lake Rd, Merced, CA 95343, USA.

§Current address: Digital Specialty Chemicals, Inc., 300 Apollo Ct., Vernon Hills, IL 60661, USA.

Acknowledgements

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Improvements to the LSU X-ray Crystallography Facility were supported by grant No. LEQSF(1196–97)-ENH-TR-10, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDouglas, S., Lowe, J. P., Mahon, M. F., Warren, J. E. & Whittlesey, M. K. (2005). J. Organomet. Chem. 690, 5027–5035.  Web of Science CSD CrossRef CAS Google Scholar
First citationDzik, W. I., Creusen, C., de Gelder, R., Peters, T. P. J., Smits, J. M. M. & de Bruin, B. (2010). Organometallics, 29, 1629–1641.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOkazaki, M., Hayashi, A., Fu, C. F., Liu, S. T. & Ozawa, F. (2009). Organometallics, 28, 902–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Dammann, C. B. & Hodgson, D. J. (1973). Inorg. Chem. 12, 1335–1339.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1408-m1409
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds