organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3130-o3131

5-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2,1,3-benzoxa­diazole

aAlberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada, and bX-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
*Correspondence e-mail: Bob.McDonald@ualberta.ca

(Received 21 August 2012; accepted 5 October 2012; online 13 October 2012)

In the title compound, C15H11N5O, which was prepared as part of a study to identify fluoro­genic substrates for the Cu-catalysed azide–alkyne cyclo­addition (CuAAC) reaction, the benzoxa­diazole unit and the triazole ring are much more closely coplanar [dihedral angle = 10.92 (7)°] than either is to the benzyl group [dihedral angles = 69.13 (3)° and 78.20 (4)°, respectively]. The crystal structure features two different sets of weak inter­molecular C—H⋯N inter­actions between adjacent benzoxadiazole and triazole rings, forming a chain that propagates in the [-110] direction parallel to the ab plane.

Related literature

For the synthesis of the title compound, see: Key & Cairo (2011[Key, J. A. & Cairo, C. W. (2011). Dyes Pigm. 88, 95-102.]). For computational studies of the absorption and fluorescence of the title compound, see: Brown et al. (2012[Brown, A., Ngai, T. Y., Key, J. A. & Cairo, C. W. (2012). J. Phys. Chem. A, 116, 46-54.]). For structures with 4-aryl substituted 1-benzyl-1,2,3-triazole rings, see: Key et al. (2008)[Key, J. A., Cairo, C. W. & Ferguson, M. J. (2008). Acta Cryst. E64, o1910.]; Li et al. (2011[Li, L., Gomes, C. S. B., Gomes, P. T., Duarte, M. T. & Fan, Z. (2011). Dalton Trans. 40, 3365-3380.]); Raghavendra & Lam (2004[Raghavendra, M. S. & Lam, Y. (2004). Tetrahedron Lett. 45, 6129-6132.]); Sarmiento-Sánchez et al. (2011)[Sarmiento-Sánchez, J. I., Aguirre, G. & Rivero, I. A. (2011). Acta Cryst. E67, o1856.]. For two related benzoxadiazole structures, see: Key, Cairo & Ferguson (2012[Key, J. A., Cairo, C. W. & Ferguson, M. J. (2012). Acta Cryst. E68, o3128-o3129.]); Key, Cairo & McDonald (2012[Key, J. A., Cairo, C. W. & McDonald, R. (2012). Acta Cryst. E68, o3132.]). For the synthesis of analogous triazole-substituted coumarin structures, see: Key et al. (2009[Key, J. A., Koh, S., Timerghazin, Q. K., Brown, A. & Cairo, C. W. (2009). Dyes Pigm. 82, 196-203.]). For information on reactive chromophores, see: Cairo et al. (2010[Cairo, C. W., Key, J. A. & Sadek, C. M. (2010). Curr. Opin. Chem. Biol. 14, 57-63.]). For recent work on small mol­ecule fluoro­phores, see: Lavis & Raines (2008[Lavis, L. D. & Raines, R. T. (2008). ACS Chem. Biol. 3, 142-155.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N5O

  • Mr = 277.29

  • Triclinic, [P \overline 1]

  • a = 5.7526 (4) Å

  • b = 9.9261 (6) Å

  • c = 11.7012 (8) Å

  • α = 90.3799 (7)°

  • β = 99.2517 (7)°

  • γ = 103.2900 (7)°

  • V = 641.14 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.50 × 0.29 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.953, Tmax = 0.978

  • 5667 measured reflections

  • 2879 independent reflections

  • 2489 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.06

  • 2879 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N3i 0.95 2.50 3.3483 (15) 148
C8—H8⋯N2ii 0.95 2.57 3.4367 (15) 151
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Small molecule fluorophores have significant applications in both chemistry and biology, and new probes are an area of continued research (Lavis & Raines, 2008). Reactive chromophores, or dyes which change their spectral properties upon chemical reaction, have the potential to act as indicators of specific functional groups or enzymatic activity in complex mixtures (Cairo et al., 2010). We examined benzoxadiazole chromophores as substrates for the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) by generating a series of analogs that contained either an alkyne or azide group appended to the ring. The title compound, I, was generated from 4-ethynylbenzoxadiazole (II), and showed a large increase in fluorescence relative to the precursor (Key & Cairo, 2011). As a result, we designated compound II as a fluorogenic substrate for CuAAC.

In the crystal, the dihedral angle between the mean planes of the benzoxadiazole group and the triazole ring is 10.92 (7)°, while the benzyl ring is twisted significantly out of the plane of the other two rings, with dihedral angles of 69.13 (3)° and 78.20 (4)° to the benzoxadiazole and triazole rings, respectively. Two different sets of weak intermolecular C-H···N interactions are observed between adjacent triazole and benzoxadiazole rings related by the inversion centers (1/2, 0, 0) (2.50 Å for H5···N3[1-x, -y, -z]) and (0, 1/2, 0) (2.57 Å for H8···N2[-x, 1-y, -z]). A parallel-stacking interaction is observed between benzoxadiazole rings related by the inversion center (1/2, 1/2, 0) (interplanar spacing = 3.366 Å).

Related literature top

For the synthesis of the title compound, see: Key & Cairo (2011). For computational studies of the absorption and fluorescence of the title compound, see: Brown et al. (2012). For structures with 4-aryl substituted 1-benzyl-1,2,3-triazole rings, see: Key et al. (2008); Li et al. (2011); Raghavendra & Lam (2004); Sarmiento-Sánchez et al. (2011). For two related benzoxadiazole structures, see: Key, Cairo & Ferguson (2012); Key, Cairo & McDonald (2012). For the synthesis of analogous triazole-substituted coumarin structures, see: Key et al. (2009). For information on reactive chromophores, see: Cairo et al. (2010). For recent work on small molecule fluorophores, see: Lavis & Raines (2008).

Experimental top

4-Ethynylbenzoxadiazole (II) (26 mg, 0.18 mmol, 1 equiv) was dissolved in 1:1 water/methanol (5 mL), followed by addition of benzyl azide (0.095 mL, 0.90 mmol, 5 equiv). Copper sulphate (6 mg, 0.036 mmol, 0.2 equiv) and ascorbic acid (10 mg, 0.025 mmol, 0.3 equiv) were then added to the solution. The reaction mixture was allowed to stir at room temperature for 1.5 h turning an opaque white colour. The solvent was removed in vacuo and the crude product was dissolved into chloroform, washed with water, dried over MgSO4, and concentrated in vacuo. The compound was purified by column chromatography (EtOAc/hexanes), and obtained as a white powder (30 mg, 60% yield). m.p. 148.7-149.5 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (s, 1H), 8.02 (dd, 1H, 4J = 1.2 Hz, 3J = 9.6 Hz), 8.01 (dd, 1H, 4J = 1.2 Hz, 3J = 9.6 Hz), 7.88 (s, 1H), 7.40-7.48 (m, 3H), 7.34-7.40 (m, 2H), 5.64 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 149.6, 149.0, 146.2, 133.8, 131.2, 129.6, 129.4, 128.5, 121.4, 117.3, 111.3, 54.8; IR (microscope): ν = 3138, 3122, 3071, 3040, 2924, 2853, 1630, 1564 cm-1; ES-HRMS calculated for C15H11N5O [M+H]+: 278.1036; observed: 278.1032. Rf = 0.18 (1:3 EtOAc/hexanes).

Refinement top

All H atoms were generated in idealized positions and refined using a riding model with fixed C-H distances (C-Haromatic = 0.95 Å, C-Hmethylene = 0.99 Å) and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of I. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 50% probability level. Hydrogen atoms are represented with artificially small thermal parameters.
[Figure 2] Fig. 2. Illustration of crystal packing as viewed parallel to the crystal a axis. Nonbonded C-H···N interactions are shown with dashed lines (see Table 1).
[Figure 3] Fig. 3. Compounds used in this study.
5-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2,1,3-benzoxadiazole top
Crystal data top
C15H11N5OZ = 2
Mr = 277.29F(000) = 288
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7526 (4) ÅCell parameters from 4623 reflections
b = 9.9261 (6) Åθ = 2.7–27.3°
c = 11.7012 (8) ŵ = 0.10 mm1
α = 90.3799 (7)°T = 173 K
β = 99.2517 (7)°Fragment, colourless
γ = 103.2900 (7)°0.50 × 0.29 × 0.23 mm
V = 641.14 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2879 independent reflections
Radiation source: fine-focus sealed tube2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 8.26 pixels mm-1θmax = 27.3°, θmin = 1.8°
ω scansh = 77
Absorption correction: numerical
(SADABS; Sheldrick, 2008)
k = 1212
Tmin = 0.953, Tmax = 0.978l = 1515
5667 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.1305P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2879 reflectionsΔρmax = 0.23 e Å3
191 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.027 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H11N5Oγ = 103.2900 (7)°
Mr = 277.29V = 641.14 (7) Å3
Triclinic, P1Z = 2
a = 5.7526 (4) ÅMo Kα radiation
b = 9.9261 (6) ŵ = 0.10 mm1
c = 11.7012 (8) ÅT = 173 K
α = 90.3799 (7)°0.50 × 0.29 × 0.23 mm
β = 99.2517 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2879 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008)
2489 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.978Rint = 0.012
5667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2879 reflectionsΔρmin = 0.17 e Å3
191 parameters
Special details top

Geometry. All standard uncertainties (s.u.'s) (except the s.u. in the dihedral angle between two least-squares planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving least-squares planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.37047 (18)0.60313 (9)0.24598 (8)0.0488 (3)
N10.5182 (2)0.51386 (12)0.25718 (9)0.0454 (3)
N20.2225 (2)0.56215 (11)0.16419 (9)0.0426 (3)
N30.3192 (2)0.05933 (11)0.11897 (9)0.0397 (3)
N40.2143 (2)0.00352 (11)0.20195 (9)0.0405 (3)
N50.02778 (17)0.05338 (10)0.21296 (8)0.0326 (2)
C10.4623 (2)0.41788 (12)0.18298 (10)0.0351 (3)
C20.2785 (2)0.44754 (12)0.12510 (10)0.0337 (3)
C30.1868 (2)0.36165 (12)0.03855 (10)0.0324 (2)
H30.06500.38180.00020.039*
C40.28041 (19)0.24890 (11)0.01314 (9)0.0298 (2)
C50.4649 (2)0.21869 (12)0.07346 (10)0.0340 (3)
H50.52480.13880.05390.041*
C60.5554 (2)0.29873 (13)0.15607 (10)0.0370 (3)
H60.67600.27660.19460.044*
C70.2003 (2)0.15745 (11)0.07735 (9)0.0303 (2)
C80.0138 (2)0.15328 (12)0.13786 (10)0.0332 (3)
H80.10080.20930.12850.040*
C90.1176 (2)0.01211 (12)0.30362 (10)0.0354 (3)
H9A0.06910.06760.34290.042*
H9B0.29030.01840.26780.042*
C100.0894 (2)0.12825 (11)0.39256 (9)0.0305 (2)
C110.1235 (2)0.22895 (13)0.42168 (11)0.0382 (3)
H110.25700.22800.38350.046*
C120.1428 (2)0.33104 (13)0.50619 (11)0.0432 (3)
H120.28910.40040.52510.052*
C130.0481 (2)0.33292 (13)0.56299 (10)0.0416 (3)
H130.03320.40230.62180.050*
C140.2610 (2)0.23349 (15)0.53388 (11)0.0442 (3)
H140.39340.23410.57290.053*
C150.2825 (2)0.13267 (13)0.44798 (10)0.0381 (3)
H150.43140.06590.42690.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0609 (6)0.0388 (5)0.0460 (5)0.0100 (4)0.0090 (4)0.0048 (4)
N10.0503 (6)0.0426 (6)0.0405 (6)0.0057 (5)0.0074 (5)0.0029 (5)
N20.0504 (6)0.0356 (6)0.0421 (6)0.0119 (5)0.0060 (5)0.0023 (4)
N30.0464 (6)0.0395 (6)0.0409 (6)0.0237 (5)0.0101 (4)0.0023 (4)
N40.0477 (6)0.0387 (6)0.0426 (6)0.0241 (5)0.0091 (5)0.0027 (4)
N50.0361 (5)0.0305 (5)0.0329 (5)0.0136 (4)0.0029 (4)0.0026 (4)
C10.0359 (6)0.0367 (6)0.0293 (5)0.0039 (5)0.0025 (4)0.0075 (5)
C20.0347 (6)0.0319 (6)0.0328 (6)0.0089 (5)0.0008 (4)0.0063 (4)
C30.0314 (5)0.0339 (6)0.0333 (6)0.0118 (5)0.0034 (4)0.0050 (4)
C40.0289 (5)0.0309 (5)0.0288 (5)0.0089 (4)0.0004 (4)0.0076 (4)
C50.0348 (6)0.0356 (6)0.0336 (6)0.0149 (5)0.0018 (4)0.0085 (5)
C60.0343 (6)0.0433 (7)0.0345 (6)0.0115 (5)0.0061 (5)0.0089 (5)
C70.0317 (5)0.0291 (5)0.0308 (5)0.0125 (4)0.0002 (4)0.0064 (4)
C80.0344 (6)0.0332 (6)0.0344 (6)0.0149 (5)0.0028 (4)0.0002 (4)
C90.0383 (6)0.0302 (6)0.0370 (6)0.0069 (5)0.0060 (5)0.0000 (5)
C100.0337 (6)0.0285 (5)0.0294 (5)0.0085 (4)0.0037 (4)0.0040 (4)
C110.0336 (6)0.0388 (6)0.0413 (6)0.0049 (5)0.0090 (5)0.0032 (5)
C120.0430 (7)0.0369 (7)0.0440 (7)0.0006 (5)0.0055 (5)0.0050 (5)
C130.0538 (8)0.0392 (7)0.0333 (6)0.0160 (6)0.0042 (5)0.0033 (5)
C140.0415 (7)0.0581 (8)0.0365 (6)0.0159 (6)0.0111 (5)0.0012 (6)
C150.0336 (6)0.0431 (7)0.0353 (6)0.0036 (5)0.0065 (5)0.0012 (5)
Geometric parameters (Å, º) top
O—N11.3804 (15)C6—H60.9500
O—N21.3833 (14)C7—C81.3706 (16)
N1—C11.3133 (16)C8—H80.9500
N2—C21.3173 (15)C9—C101.5107 (15)
N3—N41.3112 (14)C9—H9A0.9900
N3—C71.3633 (14)C9—H9B0.9900
N4—N51.3452 (13)C10—C151.3821 (16)
N5—C81.3370 (14)C10—C111.3833 (16)
N5—C91.4582 (15)C11—C121.3845 (17)
C1—C61.4237 (17)C11—H110.9500
C1—C21.4260 (16)C12—C131.3756 (18)
C2—C31.4168 (16)C12—H120.9500
C3—C41.3642 (16)C13—C141.3766 (19)
C3—H30.9500C13—H130.9500
C4—C51.4486 (15)C14—C151.3844 (18)
C4—C71.4609 (16)C14—H140.9500
C5—C61.3485 (17)C15—H150.9500
C5—H50.9500
N1—O—N2112.34 (9)C8—C7—C4130.21 (10)
C1—N1—O104.58 (10)N5—C8—C7105.21 (10)
C2—N2—O104.48 (10)N5—C8—H8127.4
N4—N3—C7108.93 (9)C7—C8—H8127.4
N3—N4—N5107.19 (9)N5—C9—C10112.41 (9)
C8—N5—N4110.86 (10)N5—C9—H9A109.1
C8—N5—C9128.06 (10)C10—C9—H9A109.1
N4—N5—C9120.90 (9)N5—C9—H9B109.1
N1—C1—C6130.24 (11)C10—C9—H9B109.1
N1—C1—C2109.44 (11)H9A—C9—H9B107.9
C6—C1—C2120.32 (11)C15—C10—C11118.90 (11)
N2—C2—C3129.42 (11)C15—C10—C9118.67 (10)
N2—C2—C1109.17 (11)C11—C10—C9122.42 (10)
C3—C2—C1121.40 (10)C10—C11—C12120.27 (11)
C4—C3—C2117.34 (10)C10—C11—H11119.9
C4—C3—H3121.3C12—C11—H11119.9
C2—C3—H3121.3C13—C12—C11120.54 (12)
C3—C4—C5120.84 (11)C13—C12—H12119.7
C3—C4—C7120.67 (10)C11—C12—H12119.7
C5—C4—C7118.48 (10)C12—C13—C14119.45 (11)
C6—C5—C4123.01 (11)C12—C13—H13120.3
C6—C5—H5118.5C14—C13—H13120.3
C4—C5—H5118.5C13—C14—C15120.20 (12)
C5—C6—C1117.08 (10)C13—C14—H14119.9
C5—C6—H6121.5C15—C14—H14119.9
C1—C6—H6121.5C10—C15—C14120.61 (11)
N3—C7—C8107.80 (10)C10—C15—H15119.7
N3—C7—C4121.94 (10)C14—C15—H15119.7
N2—O—N1—C10.09 (13)N4—N3—C7—C80.26 (13)
N1—O—N2—C20.13 (13)N4—N3—C7—C4177.60 (10)
C7—N3—N4—N50.44 (13)C3—C4—C7—N3168.10 (11)
N3—N4—N5—C80.47 (13)C5—C4—C7—N310.64 (16)
N3—N4—N5—C9176.07 (10)C3—C4—C7—C89.23 (18)
O—N1—C1—C6179.98 (11)C5—C4—C7—C8172.03 (11)
O—N1—C1—C20.02 (12)N4—N5—C8—C70.31 (13)
O—N2—C2—C3178.79 (11)C9—N5—C8—C7175.51 (10)
O—N2—C2—C10.11 (12)N3—C7—C8—N50.03 (12)
N1—C1—C2—N20.06 (13)C4—C7—C8—N5177.65 (11)
C6—C1—C2—N2179.90 (10)C8—N5—C9—C1061.08 (15)
N1—C1—C2—C3178.86 (10)N4—N5—C9—C10113.69 (11)
C6—C1—C2—C31.10 (16)N5—C9—C10—C15149.78 (10)
N2—C2—C3—C4178.88 (11)N5—C9—C10—C1131.20 (15)
C1—C2—C3—C40.34 (16)C15—C10—C11—C120.90 (18)
C2—C3—C4—C50.45 (16)C9—C10—C11—C12178.12 (11)
C2—C3—C4—C7178.26 (9)C10—C11—C12—C130.7 (2)
C3—C4—C5—C60.53 (17)C11—C12—C13—C141.0 (2)
C7—C4—C5—C6178.21 (10)C12—C13—C14—C150.1 (2)
C4—C5—C6—C10.22 (16)C11—C10—C15—C142.06 (18)
N1—C1—C6—C5178.95 (12)C9—C10—C15—C14177.00 (11)
C2—C1—C6—C51.00 (16)C13—C14—C15—C101.69 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N3i0.952.503.3483 (15)148
C8—H8···N2ii0.952.573.4367 (15)151
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11N5O
Mr277.29
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.7526 (4), 9.9261 (6), 11.7012 (8)
α, β, γ (°)90.3799 (7), 99.2517 (7), 103.2900 (7)
V3)641.14 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.29 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.953, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
5667, 2879, 2489
Rint0.012
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.06
No. of reflections2879
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N3i0.952.503.3483 (15)148
C8—H8···N2ii0.952.573.4367 (15)151
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

We acknowledge the University of Alberta, the Natural Sciences and Engineering Research Council of Canada and the Alberta Glycomics Centre for funding of this work.

References

First citationBrown, A., Ngai, T. Y., Key, J. A. & Cairo, C. W. (2012). J. Phys. Chem. A, 116, 46–54.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCairo, C. W., Key, J. A. & Sadek, C. M. (2010). Curr. Opin. Chem. Biol. 14, 57–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKey, J. A. & Cairo, C. W. (2011). Dyes Pigm. 88, 95–102.  Web of Science CrossRef CAS Google Scholar
First citationKey, J. A., Cairo, C. W. & Ferguson, M. J. (2008). Acta Cryst. E64, o1910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKey, J. A., Cairo, C. W. & Ferguson, M. J. (2012). Acta Cryst. E68, o3128–o3129.  CSD CrossRef IUCr Journals Google Scholar
First citationKey, J. A., Cairo, C. W. & McDonald, R. (2012). Acta Cryst. E68, o3132.  CSD CrossRef IUCr Journals Google Scholar
First citationKey, J. A., Koh, S., Timerghazin, Q. K., Brown, A. & Cairo, C. W. (2009). Dyes Pigm. 82, 196–203.  Web of Science CrossRef CAS Google Scholar
First citationLavis, L. D. & Raines, R. T. (2008). ACS Chem. Biol. 3, 142–155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, L., Gomes, C. S. B., Gomes, P. T., Duarte, M. T. & Fan, Z. (2011). Dalton Trans. 40, 3365–3380.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaghavendra, M. S. & Lam, Y. (2004). Tetrahedron Lett. 45, 6129–6132.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarmiento-Sánchez, J. I., Aguirre, G. & Rivero, I. A. (2011). Acta Cryst. E67, o1856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3130-o3131
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds