supplementary materials


mw2092 scheme

Acta Cryst. (2012). E68, m1430-m1431    [ doi:10.1107/S1600536812044315 ]

Di-[mu]2-acetato-1:2[kappa]2O:O';2:3[kappa]2O:O'-bis{[mu]2-4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2[kappa]6O,N,N',O':O,O';2:3[kappa]6O,O':O,N,N',O'-tricopper(II)

K. Kubono, K. Tani and K. Yokoi

Abstract top

The title compound, [Cu3(C19H18Cl2N2O2)2(CH3CO2)2], is a linear homo-trinuclear CuII complex. The central CuII atom is located on a centre of inversion and has a distorted octahedral coordination environment formed by six O atoms from two tetradentate Schiff base ligands and two bridging acetate ligands. The coordination geometry of the terminal CuII atom is square-pyramidal with a tetradentate ligand in the basal plane. The apical site is occupied by one O atom from an acetate ligand. The acetate-bridged Cu...Cu distance is 3.0910 (5) Å. An intramolecular C-H...O hydrogen bond forms an S(6) ring motif. The crystal of the trinuclear complex is stabilized by C-H...O hydrogen bonds.

Comment top

Supramolecular complexes, formed by hydrogen bonds or coordination linkages have received much attention, because of their interesting and functional properties such as molecular recognition, magnetism and catalysis (Chen et al., 2010; von Richthofen et al., 2009; Gianneschi et al., 2003). We have previously studied the structures of supramolecular CuII complexes with planar tetradentate piperazine ligands containing fluoro or chloro groups (Kubono et al., 2010; Kubono et al., 2009). These CuII complexes form either a dimer, or a dinuclear structure through C—H···F, or C—H···Cl hydrogen bonds. Complexes with the tetradentate Schiff base ligand, bis(salicylidene)propane-1,3-diamine can form triuclear complexes with coordinating anions or solvents to generate supramolecular architectures (Atakol et al., 1999; Fukuhara et al., 1990; Ray et al., 2009). However no structures of trinuclear complexes with bis-halogenosalicylidene and anionic ligands have been reported. We have attempted to assemble such a species from the mononuclear CuII complex {4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}copper(II) (Kargar et al., 2012) and copper(II) acetate as the building blocks. Herein, the structure of the title trinuclear complex is reported.

The central CuII atom is located on a centre of inversion and has a distorted octahedral coordination environment formed by four O atoms from two tetradentate Schiff base ligands in the equatorial plane and an O atom from each of the two bridging acetate ligands in the axial positions. The coordination geometry of the terminal CuII atom is square-pyramidal with the basal plane comprised of two phenolate O and two imine N atoms from a tetradentate ligand. The apical site is occupied by one O atom from a bridging acetate ligand. The terminal CuII atom is located 0.2370 (4) Å from the mean basal plane (N1/N2/O1/O2). The six-membered Cu1/N1/C8/C9/C10/N2 ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.549 (4) Å, θ = 16.4 (3)° and φ = 141.7 (13)°. Bond lengths and angles involving CuII are comparable to those observed in related structures (Atakol et al., 1999). The dihedral angle between the benzene rings (C1–C6 and C14–C19) is 68.73 (12)°. The acetate-bridged Cu···Cu distance is 3.0910 (5) Å, similar to those of related linear homo-trinuclear CuII complexes (Atakol et al., 1999; Feng et al., 2007; Yang et al., 2004). There is an intramolecular C2—H2···O4i hydrogen bond [symmetry code: (i) -x + 1, -y, -z + 1; Table 1], forming a S(6) ring motif (Bernstein et al., 1995). The molecular conformationof the trinuclear complex is stabilized by the intramolecular hydrogen bonds. In the crystal, the trinuclear complex molecules are linked through intermolecular C—H···O hydrogen bonds into a two-dimensional supramolecular network, parallel to the ab plane (Table 1 and Fig. 2).

Related literature top

For the supramolecular chemistry of complexes [similar complexes? related complexes?], see: Chen et al. (2010); von Richthofen et al. (2009); Gianneschi et al. (2003). For related structures, see: Atakol et al. (1999); Feng et al. (2007); Ray et al. (2009); Yang et al. (2004). For other structures [please be more specific], see: Fukuhara et al. (1990); Kargar et al. (2012); Kubono et al., (2009, 2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For analysis of ring conformations, see: Cremer & Pople (1975).

Experimental top

The ligand (0.40 mmol) was dissolved in 20 mL of hot methanol. Then 20 mL of a methanol solution of copper acetate monohydrate (0.60 mmol) were added to this solution.The mixture was stirred for 20 min at 340 K. After a few days at room temperature, green crystals of title complex were obtained. Yield 52%. Analysis calculated for C42H42Cl4Cu3N4O8: C 47.44, H 3.98, N 5.27%; found: C 47.48, H 3.92, N 5.21%.

Refinement top

All H atoms bound to carbon were placed in idealized positions and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecule of the title complex showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are represented by circles of arbitrary size. [symmetry code: (i) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. Packing diagram of the title complex, viewed down the c axis. The intramolecular and intermolecular C—H···O hydrogen bonds are shown as dashed lines.
Di-µ2-acetato-1:2κ2O:O';2:3κ2O:O'-bis{µ2-4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ6O,N,N',O':O,O'; 2:3κ6O,O':O,N,N',O'-tricopper(II) top
Crystal data top
[Cu3(C19H18Cl2N2O2)2(C2H3O2)2]F(000) = 2164.00
Mr = 1063.25Dx = 1.618 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 19.0732 (18) Åθ = 15.0–17.4°
b = 11.6191 (11) ŵ = 1.75 mm1
c = 19.693 (3) ÅT = 298 K
V = 4364.2 (9) Å3Prismatic, green
Z = 40.23 × 0.20 × 0.16 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.024
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 1324
Tmin = 0.675, Tmax = 0.756k = 815
7325 measured reflectionsl = 250
5006 independent reflections3 standard reflections every 150 reflections
2796 reflections with F2 > 2.0σ(F2) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.7391P]
where P = (Fo2 + 2Fc2)/3
5006 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.45 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu3(C19H18Cl2N2O2)2(C2H3O2)2]V = 4364.2 (9) Å3
Mr = 1063.25Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 19.0732 (18) ŵ = 1.75 mm1
b = 11.6191 (11) ÅT = 298 K
c = 19.693 (3) Å0.23 × 0.20 × 0.16 mm
Data collection top
Rigaku AFC7R
diffractometer
2796 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.675, Tmax = 0.756θmax = 27.5°
7325 measured reflections3 standard reflections every 150 reflections
5006 independent reflections intensity decay: 0.5%
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.39 e Å3
S = 1.00Δρmin = 0.45 e Å3
5006 reflectionsAbsolute structure: ?
280 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64313 (2)0.07637 (3)0.44178 (2)0.03103 (12)
Cu20.50000.00000.50000.02727 (14)
Cl10.47496 (6)0.12235 (10)0.13509 (5)0.0602 (3)
Cl20.77615 (6)0.36381 (9)0.66639 (5)0.0635 (3)
O10.54772 (11)0.0350 (2)0.40871 (11)0.0336 (5)
O20.61636 (11)0.01062 (19)0.52089 (11)0.0359 (6)
O30.60366 (11)0.23406 (18)0.48839 (11)0.0363 (6)
O40.49941 (11)0.16268 (18)0.52142 (11)0.0341 (5)
N10.66389 (14)0.1401 (2)0.35159 (14)0.0326 (6)
N20.74426 (14)0.0639 (2)0.46700 (14)0.0349 (7)
C10.53159 (17)0.0020 (3)0.34682 (16)0.0302 (7)
C20.47113 (18)0.0639 (3)0.33434 (18)0.0384 (8)
H20.44160.08300.37020.046*
C30.45508 (19)0.1003 (3)0.27000 (18)0.0418 (9)
H30.41520.14470.26280.050*
C40.49741 (19)0.0718 (3)0.21590 (18)0.0405 (9)
C50.55477 (18)0.0033 (3)0.22513 (18)0.0385 (8)
H50.58160.01880.18790.046*
C60.57347 (17)0.0342 (3)0.29035 (17)0.0320 (8)
C70.63314 (18)0.1099 (3)0.29713 (19)0.0374 (8)
H70.65110.14010.25700.045*
C80.72103 (18)0.2234 (3)0.34661 (19)0.0433 (9)
H8A0.71100.28770.37650.052*
H8B0.72290.25270.30050.052*
C90.79266 (17)0.1737 (3)0.36505 (18)0.0390 (9)
C100.79631 (19)0.1469 (3)0.44084 (18)0.0465 (10)
H10A0.84280.11750.45090.056*
H10B0.79080.21850.46560.056*
C110.8086 (2)0.0676 (4)0.3228 (2)0.0584 (11)
H11A0.77640.00720.33450.088*
H11B0.85570.04260.33160.088*
H11C0.80380.08590.27550.088*
C120.8473 (2)0.2683 (4)0.3510 (2)0.0592 (12)
H12A0.89280.24180.36460.089*
H12B0.83530.33620.37630.089*
H12C0.84770.28590.30340.089*
C130.76749 (18)0.0137 (3)0.50710 (17)0.0407 (9)
H130.81600.01810.51150.049*
C140.72733 (18)0.0952 (3)0.54648 (16)0.0345 (8)
C150.76437 (19)0.1790 (3)0.58283 (18)0.0426 (9)
H150.81300.18240.57950.051*
C160.72974 (19)0.2558 (3)0.62314 (18)0.0416 (9)
C170.65761 (19)0.2510 (3)0.63013 (18)0.0434 (9)
H170.63460.30270.65850.052*
C180.62008 (19)0.1695 (3)0.59500 (17)0.0408 (9)
H180.57150.16770.59930.049*
C190.65340 (17)0.0887 (3)0.55256 (16)0.0312 (7)
C200.54487 (18)0.2416 (3)0.51585 (16)0.0312 (7)
C210.5241 (2)0.3555 (3)0.5462 (2)0.0532 (11)
H21A0.55840.41260.53450.080*
H21B0.52140.34840.59470.080*
H21C0.47920.37810.52870.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0229 (2)0.0343 (2)0.0359 (2)0.00107 (18)0.00405 (18)0.00024 (19)
Cu20.0223 (3)0.0305 (3)0.0290 (3)0.0010 (2)0.0029 (2)0.0011 (2)
Cl10.0663 (7)0.0744 (7)0.0398 (5)0.0041 (6)0.0070 (5)0.0176 (5)
Cl20.0759 (8)0.0619 (7)0.0526 (6)0.0295 (6)0.0149 (6)0.0059 (5)
O10.0232 (12)0.0450 (13)0.0324 (13)0.0047 (11)0.0016 (10)0.0044 (11)
O20.0274 (12)0.0403 (14)0.0400 (13)0.0061 (11)0.0050 (10)0.0114 (12)
O30.0290 (12)0.0341 (13)0.0459 (15)0.0015 (11)0.0017 (11)0.0057 (11)
O40.0318 (13)0.0287 (12)0.0419 (14)0.0008 (11)0.0038 (11)0.0014 (10)
N10.0263 (15)0.0311 (15)0.0404 (17)0.0023 (12)0.0009 (13)0.0044 (13)
N20.0267 (15)0.0431 (18)0.0348 (15)0.0058 (13)0.0037 (13)0.0025 (14)
C10.0291 (18)0.0295 (18)0.0320 (18)0.0061 (15)0.0024 (15)0.0003 (15)
C20.0329 (19)0.045 (2)0.0372 (19)0.0049 (16)0.0018 (16)0.0017 (17)
C30.036 (2)0.046 (2)0.044 (2)0.0065 (18)0.0038 (18)0.0029 (18)
C40.042 (2)0.046 (2)0.034 (2)0.0053 (19)0.0068 (16)0.0066 (17)
C50.034 (2)0.046 (2)0.0355 (19)0.0010 (18)0.0019 (16)0.0012 (17)
C60.0263 (18)0.0307 (18)0.0390 (19)0.0015 (14)0.0011 (15)0.0007 (15)
C70.035 (2)0.0363 (19)0.041 (2)0.0015 (16)0.0056 (16)0.0098 (17)
C80.041 (2)0.036 (2)0.053 (2)0.0105 (17)0.0012 (18)0.0059 (18)
C90.029 (2)0.042 (2)0.046 (2)0.0053 (16)0.0060 (17)0.0026 (17)
C100.035 (2)0.056 (2)0.048 (2)0.0185 (18)0.0001 (18)0.0040 (19)
C110.048 (3)0.062 (3)0.065 (3)0.000 (2)0.020 (2)0.009 (2)
C120.042 (2)0.068 (3)0.067 (3)0.024 (2)0.002 (2)0.018 (2)
C130.0235 (18)0.059 (3)0.039 (2)0.0007 (17)0.0005 (15)0.0009 (19)
C140.0304 (19)0.043 (2)0.0300 (18)0.0035 (16)0.0013 (14)0.0050 (16)
C150.031 (2)0.056 (2)0.040 (2)0.0092 (18)0.0029 (16)0.0001 (19)
C160.045 (2)0.042 (2)0.037 (2)0.0148 (19)0.0076 (17)0.0029 (17)
C170.050 (2)0.043 (2)0.038 (2)0.0009 (19)0.0065 (18)0.0115 (17)
C180.032 (2)0.047 (2)0.043 (2)0.0013 (17)0.0041 (17)0.0103 (18)
C190.0289 (18)0.0321 (18)0.0325 (18)0.0001 (15)0.0003 (14)0.0026 (15)
C200.0343 (18)0.0285 (18)0.0309 (19)0.0034 (15)0.0048 (15)0.0007 (14)
C210.046 (2)0.039 (2)0.075 (3)0.0012 (19)0.014 (2)0.019 (2)
Geometric parameters (Å, º) top
Cu1—O21.926 (2)C7—H70.9300
Cu1—N11.965 (3)C8—C91.527 (5)
Cu1—O11.992 (2)C8—H8A0.9700
Cu1—N21.997 (3)C8—H8B0.9700
Cu1—O32.183 (2)C9—C111.518 (5)
Cu2—O4i1.937 (2)C9—C101.526 (5)
Cu2—O41.937 (2)C9—C121.540 (5)
Cu2—O12.056 (2)C10—H10A0.9700
Cu2—O1i2.056 (2)C10—H10B0.9700
Cu2—O2i2.260 (2)C11—H11A0.9600
Cu2—O22.260 (2)C11—H11B0.9600
Cl1—C41.750 (4)C11—H11C0.9600
Cl2—C161.756 (4)C12—H12A0.9600
O1—C11.314 (4)C12—H12B0.9600
O2—C191.308 (4)C12—H12C0.9600
O3—C201.248 (4)C13—C141.444 (5)
O4—C201.267 (4)C13—H130.9300
N1—C71.272 (4)C14—C151.400 (5)
N1—C81.461 (4)C14—C191.417 (4)
N2—C131.277 (4)C15—C161.364 (5)
N2—C101.477 (4)C15—H150.9300
C1—C21.406 (5)C16—C171.384 (5)
C1—C61.419 (4)C17—C181.374 (4)
C2—C31.371 (5)C17—H170.9300
C2—H20.9300C18—C191.408 (4)
C3—C41.377 (5)C18—H180.9300
C3—H30.9300C20—C211.504 (5)
C4—C51.365 (5)C21—H21A0.9600
C5—C61.402 (4)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.445 (5)
O2—Cu1—N1169.27 (11)N1—C8—C9113.6 (3)
O2—Cu1—O184.00 (9)N1—C8—H8A108.8
N1—Cu1—O188.83 (10)C9—C8—H8A108.8
O2—Cu1—N290.96 (11)N1—C8—H8B108.8
N1—Cu1—N293.31 (11)C9—C8—H8B108.8
O1—Cu1—N2161.12 (11)H8A—C8—H8B107.7
O2—Cu1—O390.51 (9)C11—C9—C10111.2 (3)
N1—Cu1—O397.66 (10)C11—C9—C8110.8 (3)
O1—Cu1—O391.44 (9)C10—C9—C8110.5 (3)
N2—Cu1—O3106.83 (10)C11—C9—C12110.2 (3)
O4i—Cu2—O4180.00 (13)C10—C9—C12106.9 (3)
O4i—Cu2—O189.99 (9)C8—C9—C12107.0 (3)
O4—Cu2—O190.01 (9)N2—C10—C9116.3 (3)
O4i—Cu2—O1i90.01 (9)N2—C10—H10A108.2
O4—Cu2—O1i89.99 (9)C9—C10—H10A108.2
O1—Cu2—O1i180.00 (10)N2—C10—H10B108.2
O4i—Cu2—O2i91.11 (8)C9—C10—H10B108.2
O4—Cu2—O2i88.89 (8)H10A—C10—H10B107.4
O1—Cu2—O2i105.35 (8)C9—C11—H11A109.5
O1i—Cu2—O2i74.65 (8)C9—C11—H11B109.5
O4i—Cu2—O288.89 (8)H11A—C11—H11B109.5
O4—Cu2—O291.11 (8)C9—C11—H11C109.5
O1—Cu2—O274.65 (8)H11A—C11—H11C109.5
O1i—Cu2—O2105.35 (8)H11B—C11—H11C109.5
O2i—Cu2—O2180.0C9—C12—H12A109.5
C1—O1—Cu1126.0 (2)C9—C12—H12B109.5
C1—O1—Cu2130.5 (2)H12A—C12—H12B109.5
Cu1—O1—Cu299.58 (9)C9—C12—H12C109.5
C19—O2—Cu1127.3 (2)H12A—C12—H12C109.5
C19—O2—Cu2130.9 (2)H12B—C12—H12C109.5
Cu1—O2—Cu294.85 (9)N2—C13—C14127.6 (3)
C20—O3—Cu1123.5 (2)N2—C13—H13116.2
C20—O4—Cu2133.1 (2)C14—C13—H13116.2
C7—N1—C8118.1 (3)C15—C14—C19119.7 (3)
C7—N1—Cu1124.4 (2)C15—C14—C13117.6 (3)
C8—N1—Cu1117.4 (2)C19—C14—C13122.6 (3)
C13—N2—C10116.3 (3)C16—C15—C14120.5 (3)
C13—N2—Cu1122.7 (2)C16—C15—H15119.7
C10—N2—Cu1121.0 (2)C14—C15—H15119.7
O1—C1—C2120.9 (3)C15—C16—C17120.9 (3)
O1—C1—C6121.2 (3)C15—C16—Cl2120.3 (3)
C2—C1—C6117.9 (3)C17—C16—Cl2118.8 (3)
C3—C2—C1120.9 (3)C18—C17—C16119.7 (3)
C3—C2—H2119.6C18—C17—H17120.1
C1—C2—H2119.6C16—C17—H17120.1
C2—C3—C4120.7 (3)C17—C18—C19121.5 (3)
C2—C3—H3119.7C17—C18—H18119.2
C4—C3—H3119.7C19—C18—H18119.2
C5—C4—C3120.5 (3)O2—C19—C18120.1 (3)
C5—C4—Cl1120.9 (3)O2—C19—C14122.3 (3)
C3—C4—Cl1118.7 (3)C18—C19—C14117.6 (3)
C4—C5—C6120.4 (3)O3—C20—O4127.0 (3)
C4—C5—H5119.8O3—C20—C21118.1 (3)
C6—C5—H5119.8O4—C20—C21115.0 (3)
C5—C6—C1119.5 (3)C20—C21—H21A109.5
C5—C6—C7118.3 (3)C20—C21—H21B109.5
C1—C6—C7122.1 (3)H21A—C21—H21B109.5
N1—C7—C6127.5 (3)C20—C21—H21C109.5
N1—C7—H7116.2H21A—C21—H21C109.5
C6—C7—H7116.2H21B—C21—H21C109.5
O2—Cu1—O1—C1137.9 (3)Cu1—O1—C1—C2156.4 (2)
N1—Cu1—O1—C134.1 (3)Cu2—O1—C1—C23.4 (5)
N2—Cu1—O1—C162.7 (4)Cu1—O1—C1—C625.2 (4)
O3—Cu1—O1—C1131.8 (2)Cu2—O1—C1—C6178.2 (2)
O2—Cu1—O1—Cu221.70 (10)O1—C1—C2—C3178.6 (3)
N1—Cu1—O1—Cu2166.30 (11)C6—C1—C2—C33.0 (5)
N2—Cu1—O1—Cu296.9 (3)C1—C2—C3—C40.9 (6)
O3—Cu1—O1—Cu268.66 (10)C2—C3—C4—C52.3 (6)
O4i—Cu2—O1—C150.4 (3)C2—C3—C4—Cl1179.1 (3)
O4—Cu2—O1—C1129.6 (3)C3—C4—C5—C63.3 (5)
O2i—Cu2—O1—C140.8 (3)Cl1—C4—C5—C6178.2 (3)
O2—Cu2—O1—C1139.2 (3)C4—C5—C6—C11.1 (5)
O4i—Cu2—O1—Cu1107.81 (10)C4—C5—C6—C7177.8 (3)
O4—Cu2—O1—Cu172.19 (10)O1—C1—C6—C5179.6 (3)
O2i—Cu2—O1—Cu1161.04 (9)C2—C1—C6—C52.0 (5)
O2—Cu2—O1—Cu118.96 (9)O1—C1—C6—C73.8 (5)
N1—Cu1—O2—C1985.3 (6)C2—C1—C6—C7174.6 (3)
O1—Cu1—O2—C19133.6 (3)C8—N1—C7—C6176.5 (3)
N2—Cu1—O2—C1928.2 (3)Cu1—N1—C7—C66.9 (5)
O3—Cu1—O2—C19135.0 (3)C5—C6—C7—N1169.5 (3)
N1—Cu1—O2—Cu267.7 (5)C1—C6—C7—N113.9 (5)
O1—Cu1—O2—Cu219.43 (9)C7—N1—C8—C9113.3 (4)
N2—Cu1—O2—Cu2178.80 (10)Cu1—N1—C8—C963.6 (4)
O3—Cu1—O2—Cu271.96 (9)N1—C8—C9—C1154.7 (4)
O4i—Cu2—O2—C1941.8 (3)N1—C8—C9—C1069.0 (4)
O4—Cu2—O2—C19138.2 (3)N1—C8—C9—C12174.9 (3)
O1—Cu2—O2—C19132.1 (3)C13—N2—C10—C9134.9 (3)
O1i—Cu2—O2—C1947.9 (3)Cu1—N2—C10—C946.4 (4)
O4i—Cu2—O2—Cu1109.72 (10)C11—C9—C10—N264.1 (4)
O4—Cu2—O2—Cu170.28 (10)C8—C9—C10—N259.5 (4)
O1—Cu2—O2—Cu119.42 (9)C12—C9—C10—N2175.6 (3)
O1i—Cu2—O2—Cu1160.58 (9)C10—N2—C13—C14171.2 (3)
O2—Cu1—O3—C2048.2 (2)Cu1—N2—C13—C147.4 (5)
N1—Cu1—O3—C20124.9 (2)N2—C13—C14—C15174.8 (3)
O1—Cu1—O3—C2035.9 (2)N2—C13—C14—C199.1 (6)
N2—Cu1—O3—C20139.3 (2)C19—C14—C15—C161.2 (5)
O1—Cu2—O4—C2044.3 (3)C13—C14—C15—C16177.4 (3)
O1i—Cu2—O4—C20135.7 (3)C14—C15—C16—C171.4 (6)
O2i—Cu2—O4—C20149.7 (3)C14—C15—C16—Cl2177.8 (3)
O2—Cu2—O4—C2030.3 (3)C15—C16—C17—C181.4 (6)
O2—Cu1—N1—C723.8 (7)Cl2—C16—C17—C18177.9 (3)
O1—Cu1—N1—C724.2 (3)C16—C17—C18—C191.1 (5)
N2—Cu1—N1—C7137.0 (3)Cu1—O2—C19—C18159.7 (2)
O3—Cu1—N1—C7115.5 (3)Cu2—O2—C19—C1816.4 (4)
O2—Cu1—N1—C8152.9 (5)Cu1—O2—C19—C1420.9 (4)
O1—Cu1—N1—C8159.1 (2)Cu2—O2—C19—C14164.2 (2)
N2—Cu1—N1—C839.6 (2)C17—C18—C19—O2178.6 (3)
O3—Cu1—N1—C867.8 (2)C17—C18—C19—C140.9 (5)
O2—Cu1—N2—C1320.7 (3)C15—C14—C19—O2178.5 (3)
N1—Cu1—N2—C13149.5 (3)C13—C14—C19—O22.5 (5)
O1—Cu1—N2—C1353.4 (5)C15—C14—C19—C180.9 (5)
O3—Cu1—N2—C13111.5 (3)C13—C14—C19—C18176.9 (3)
O2—Cu1—N2—C10157.9 (2)Cu1—O3—C20—O40.0 (5)
N1—Cu1—N2—C1031.9 (3)Cu1—O3—C20—C21179.9 (2)
O1—Cu1—N2—C10128.0 (3)Cu2—O4—C20—O36.2 (5)
O3—Cu1—N2—C1067.1 (3)Cu2—O4—C20—C21173.7 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.583.115 (4)117
C15—H15···O3ii0.932.593.289 (4)133
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.583.115 (4)117
C15—H15···O3ii0.932.593.289 (4)133
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y1/2, z.
Acknowledgements top

This study was supported financially in part by Grants-in-Aid for Scientific Research (grant Nos. 20550075 and 23550094) from the Japan Society for the Promotion of Science.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.

Chen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115–1124.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Feng, Y.-F., Wu, H.-Y., Zhu, B.-L., Wang, S.-R. & Huang, W.-P. (2007). Acta Cryst. E63, m1107–m1108.

Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479.

Gianneschi, N. C., Bertin, P. A., Nguyen, S. T., Mirkin, C. A., Zakharov, L. N. & Rheingold, L. (2003). J. Am. Chem. Soc. 125, 10508–10509.

Kargar, H., Kia, R., Ganji, F. & Mirkhani, V. (2012). Acta Cryst. E68, m1135.

Kubono, K., Noshita, C., Tani, K. & Yokoi, K. (2009). Acta Cryst. E65, m1685–m1686.

Kubono, K., Tsuno, Y., Tani, K. & Yokoi, K. (2010). Acta Cryst. E66, m1397–m1398.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Ray, A., Sadhukhan, D., Rosair, G. M., Gómez-García, C. J. & Mitra, S. (2009). Polyhedron, 28, 3542–3550.

Richthofen, C.-G. F. von, Stammler, A., Bögge, H., DeGroot, M. W., Long, J. R. & Glaser, T. (2009). Inorg. Chem. 48, 10165–10176.

Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yang, S.-P., Hong, Y., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m582–m584.