supplementary materials


ng5297 scheme

Acta Cryst. (2012). E68, m1346    [ doi:10.1107/S1600536812042110 ]

[Hydridotris(pyrazol-1-yl-[kappa]N2)borato]bis(methylamino-[kappa]N)(triphenylphosphine-[kappa]P)ruthenium(II) chloride dichloromethane solvate monohydrate

Y.-D. Lin, C.-P. Chang, Q.-S. Huang and Y.-H. Lo

Abstract top

The title salt, [Ru(Tp)(CH5N)2(PPh3)]Cl·CH2Cl2·H2O [where Tp is (C3H3N2)3BH and PPH3 is C18H15P], has the RuIII atom in an octahedral geometry; one of the Ru-N(Tp) bonds [2.135 (8) Å] is slightly longer than another two, owing to the trans influence of PPh3 ligand. N-H...Cl and O-H...Cl hydrogen bonding leads to the formation of layers parallel to (100).

Comment top

Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex RuCl(Tp)(PPh3)2 (Alcock et al., 1992) has been used as the starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphines (Burrows, 2001). The development of Tp chemistry within group VIII has picked up the pace since then.

Treatment of the complex [Ru(Tp)(PPh3)2Cl] reacted with methyl amine in warm methanol affording the title compound [Ru(NH2CH3)2(Tp)(PPh3)]Cl.CH2Cl2.H2O (Fig. 1). The ν(B—H) vibration of the title complex is found at 2481 cm-1, which is characteristic of Tp bound to a metal center in a terdentate (N,N,N) manner. Yellow crystals were obtained by slow diffusion of hexane into a CHCl3 solution at room temperature for 3 d. The coordination geometry is approximately octahedral and the bite angle of the Tp ligand produces an average produces an average N—Ru—N angle of 86.07° only slightly distorted from 90°. One of the Ru—N(Tp) bond length (2.135 (8) Å) is slightly longer than another two due to the trans influence of PPh3 ligand (Slugovc et al. 1998).

Related literature top

For general background, see: Alcock et al. (1992); Burrows et al. (2001); Pavlik et al., (2005); Slugovc et al. (1998).

Experimental top

The synthesis of the title compound was carried out as follows. To a solution of [(Tp)(PPh3)2RuCl] (0.39 g, 0.45 mmol) in methanol (20 ml), an excess of methyl amine were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 6 h at room temperature (298 K). Then it was concentrated to approximately half of the volume and cooled to 273 K. The yellow precipitate was filtered off, washed with ethanol and ether and dried was dried under vacuum to give the title compound.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, by C—H = 0.95 and 0.98 Å with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C), N—H = 0.92 Å with Uiso(H) = 1.2Ueq(N), and B—H = 1.0 Å with Uiso(H) = 1.2Ueq(B).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).
[Hydridotris(pyrazol-1-yl-κN2)borato]bis(methylamino-\<i>Nk) (triphenylphosphine-κP)ruthenium(II) chloride dichloromethane solvate monohydrate top
Crystal data top
[Ru(C9H10BN6)(CH5N)2(C18H15P)]Cl·CH2Cl2·H2OF(000) = 1592
Mr = 776.89Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 973 reflections
a = 12.3791 (8) Åθ = 1.7–25.0°
b = 13.1285 (9) ŵ = 0.77 mm1
c = 21.5723 (15) ÅT = 200 K
β = 97.405 (4)°Prism, pale yellow
V = 3476.7 (4) Å30.25 × 0.13 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6102 independent reflections
Radiation source: fine-focus sealed tube2862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing; 1995)
h = 1414
Tmin = 0.832, Tmax = 0.956k = 1315
22188 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
6102 reflections(Δ/σ)max = 0.001
408 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Ru(C9H10BN6)(CH5N)2(C18H15P)]Cl·CH2Cl2·H2OV = 3476.7 (4) Å3
Mr = 776.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3791 (8) ŵ = 0.77 mm1
b = 13.1285 (9) ÅT = 200 K
c = 21.5723 (15) Å0.25 × 0.13 × 0.06 mm
β = 97.405 (4)°
Data collection top
Nonius KappaCCD
diffractometer
6102 independent reflections
Absorption correction: multi-scan
(Blessing; 1995)
2862 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.956Rint = 0.110
22188 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.167Δρmax = 1.31 e Å3
S = 0.99Δρmin = 0.82 e Å3
6102 reflectionsAbsolute structure: ?
408 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7768 (6)0.9797 (6)0.1920 (4)0.032 (2)
H10.78200.98990.14890.038*
C20.7942 (7)1.0542 (7)0.2377 (4)0.042 (2)
H20.81431.12320.23240.050*
C30.7765 (6)1.0081 (7)0.2914 (4)0.036 (2)
H30.78091.04000.33120.043*
C40.8923 (6)0.6155 (6)0.2699 (4)0.036 (2)
H40.91110.56890.23930.043*
C50.9391 (7)0.6182 (7)0.3310 (4)0.042 (3)
H50.99580.57510.34980.051*
C60.8889 (7)0.6945 (7)0.3598 (4)0.041 (2)
H60.90340.71440.40240.049*
C70.4925 (7)0.7002 (6)0.2441 (4)0.039 (2)
H70.45470.66650.20880.047*
C80.4520 (7)0.7148 (7)0.3005 (4)0.045 (3)
H80.38320.69450.31140.054*
C90.5335 (7)0.7650 (7)0.3366 (4)0.041 (2)
H90.53050.78720.37830.050*
C100.9845 (6)0.7850 (6)0.1509 (4)0.030 (2)
C111.0067 (6)0.8209 (5)0.2117 (4)0.025 (2)
H110.94960.83140.23650.030*
C121.1155 (7)0.8413 (6)0.2360 (4)0.032 (2)
H121.13130.86710.27730.039*
C131.1996 (7)0.8246 (6)0.2012 (4)0.038 (2)
H131.27280.83780.21850.046*
C141.1762 (7)0.7890 (7)0.1416 (5)0.045 (3)
H141.23410.77720.11760.054*
C151.0691 (7)0.7694 (6)0.1149 (4)0.042 (3)
H151.05410.74580.07300.050*
C160.8175 (6)0.8324 (6)0.0499 (4)0.029 (2)
C170.8805 (7)0.9189 (7)0.0449 (4)0.040 (2)
H170.94090.93230.07570.048*
C180.8558 (7)0.9863 (7)0.0047 (4)0.043 (3)
H180.90111.04390.00800.052*
C190.7679 (8)0.9711 (7)0.0486 (4)0.044 (3)
H190.75061.01860.08160.053*
C200.7051 (7)0.8868 (7)0.0446 (4)0.038 (2)
H200.64450.87500.07540.046*
C210.7288 (6)0.8174 (7)0.0046 (3)0.033 (2)
H210.68370.75930.00690.040*
C220.8747 (6)0.6233 (6)0.0854 (4)0.034 (2)
C230.8167 (7)0.5810 (7)0.0324 (4)0.045 (3)
H230.76080.62000.00910.054*
C240.8378 (8)0.4827 (7)0.0121 (4)0.052 (3)
H240.79820.45680.02520.062*
C250.9146 (8)0.4243 (7)0.0455 (5)0.051 (3)
H250.92790.35710.03200.061*
C260.9736 (7)0.4623 (7)0.0989 (4)0.046 (3)
H261.02800.42190.12230.055*
C270.9530 (7)0.5596 (7)0.1183 (4)0.037 (2)
H270.99370.58460.15550.045*
C280.5159 (7)0.8916 (7)0.1380 (4)0.055 (3)
H28A0.46550.86030.16390.082*
H28B0.47440.92400.10150.082*
H28C0.56010.94300.16260.082*
C290.6553 (8)0.5105 (7)0.1935 (4)0.073 (3)
H29A0.73020.49390.21110.110*
H29B0.62230.45160.17050.110*
H29C0.61300.52780.22750.110*
C300.3166 (9)0.7761 (9)0.0453 (5)0.103 (5)
H30A0.35530.71430.05690.123*
H30B0.29240.76330.00400.123*
N10.7516 (5)0.8910 (5)0.2177 (3)0.0273 (17)
N20.7519 (5)0.9104 (5)0.2797 (3)0.0305 (18)
N30.8157 (5)0.6886 (5)0.2595 (3)0.0272 (17)
N40.8147 (5)0.7359 (5)0.3154 (3)0.0284 (17)
N50.5924 (5)0.7400 (5)0.2464 (3)0.0326 (17)
N60.6183 (5)0.7785 (5)0.3048 (3)0.0299 (18)
N70.5880 (5)0.8123 (5)0.1169 (3)0.0316 (17)
H7A0.62200.84000.08540.038*
H7B0.54430.76030.09950.038*
N80.6561 (5)0.5967 (5)0.1514 (3)0.0396 (19)
H8A0.58590.60440.13200.047*
H8B0.69760.57800.12090.047*
Cl10.4076 (2)0.8772 (3)0.03824 (13)0.0900 (10)
Cl20.2051 (2)0.7940 (2)0.09856 (13)0.0811 (9)
Cl30.40486 (19)0.61848 (19)0.08092 (10)0.0552 (7)
Ru10.71139 (5)0.74571 (5)0.18349 (3)0.0266 (2)
P10.84429 (16)0.74734 (19)0.11836 (9)0.0289 (5)
B10.7333 (7)0.8233 (8)0.3253 (5)0.035 (3)
H1C0.74180.84720.36970.042*
O10.4507 (5)0.3851 (5)0.0283 (3)0.078 (2)
H1A0.45880.43810.04910.093*
H1B0.49110.37290.00120.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (5)0.034 (6)0.037 (6)0.002 (4)0.009 (4)0.005 (5)
C20.045 (6)0.033 (6)0.048 (6)0.009 (5)0.003 (5)0.004 (5)
C30.027 (5)0.036 (6)0.042 (6)0.002 (4)0.007 (4)0.014 (5)
C40.027 (5)0.023 (5)0.060 (7)0.002 (4)0.008 (5)0.007 (5)
C50.023 (5)0.049 (7)0.052 (7)0.002 (5)0.006 (5)0.021 (5)
C60.033 (6)0.052 (7)0.037 (6)0.000 (5)0.001 (5)0.013 (5)
C70.021 (5)0.044 (6)0.050 (6)0.011 (4)0.005 (5)0.003 (5)
C80.024 (5)0.074 (8)0.038 (6)0.006 (5)0.006 (5)0.004 (5)
C90.034 (6)0.061 (7)0.030 (5)0.005 (5)0.007 (4)0.007 (5)
C100.014 (5)0.040 (6)0.036 (5)0.000 (4)0.001 (4)0.001 (4)
C110.026 (5)0.018 (5)0.031 (5)0.004 (4)0.006 (4)0.003 (4)
C120.031 (6)0.022 (5)0.040 (6)0.014 (4)0.010 (5)0.004 (4)
C130.014 (5)0.040 (6)0.058 (7)0.013 (4)0.005 (5)0.001 (5)
C140.022 (5)0.051 (7)0.066 (7)0.002 (5)0.015 (5)0.015 (5)
C150.028 (5)0.056 (7)0.042 (5)0.005 (5)0.008 (4)0.014 (5)
C160.025 (5)0.024 (5)0.038 (5)0.001 (4)0.003 (4)0.002 (4)
C170.032 (6)0.040 (7)0.048 (6)0.008 (5)0.010 (5)0.002 (5)
C180.040 (6)0.040 (6)0.053 (7)0.001 (5)0.019 (5)0.003 (5)
C190.042 (7)0.038 (7)0.056 (7)0.002 (5)0.019 (5)0.013 (5)
C200.034 (6)0.055 (7)0.026 (5)0.003 (5)0.003 (4)0.008 (5)
C210.035 (6)0.039 (6)0.026 (5)0.006 (4)0.002 (4)0.000 (4)
C220.029 (5)0.033 (6)0.041 (6)0.003 (4)0.004 (4)0.009 (5)
C230.027 (6)0.039 (7)0.069 (7)0.002 (5)0.007 (5)0.014 (5)
C240.051 (7)0.048 (7)0.052 (7)0.008 (6)0.009 (5)0.019 (6)
C250.044 (7)0.038 (7)0.072 (8)0.004 (5)0.016 (6)0.010 (6)
C260.044 (6)0.036 (6)0.056 (7)0.015 (5)0.002 (5)0.002 (5)
C270.045 (6)0.030 (6)0.037 (6)0.003 (5)0.002 (4)0.007 (5)
C280.031 (6)0.071 (8)0.058 (7)0.018 (5)0.010 (5)0.013 (5)
C290.074 (8)0.046 (7)0.091 (8)0.009 (6)0.026 (6)0.028 (6)
C300.062 (8)0.119 (12)0.122 (10)0.010 (8)0.007 (8)0.067 (8)
N10.020 (4)0.023 (4)0.038 (5)0.005 (3)0.000 (3)0.008 (4)
N20.027 (4)0.031 (5)0.033 (5)0.004 (3)0.001 (3)0.005 (4)
N30.023 (4)0.029 (4)0.029 (4)0.004 (3)0.001 (3)0.003 (3)
N40.026 (4)0.028 (5)0.029 (4)0.005 (3)0.002 (3)0.006 (4)
N50.021 (4)0.039 (5)0.037 (4)0.002 (4)0.002 (3)0.010 (4)
N60.034 (5)0.028 (5)0.027 (4)0.002 (3)0.004 (3)0.000 (3)
N70.020 (4)0.034 (5)0.040 (4)0.004 (3)0.000 (3)0.002 (4)
N80.027 (4)0.030 (5)0.062 (5)0.001 (3)0.010 (4)0.009 (4)
Cl10.061 (2)0.132 (3)0.076 (2)0.006 (2)0.0063 (16)0.027 (2)
Cl20.080 (2)0.075 (2)0.084 (2)0.0087 (17)0.0043 (17)0.0237 (17)
Cl30.0451 (16)0.0703 (19)0.0481 (16)0.0086 (14)0.0021 (12)0.0036 (13)
Ru10.0212 (4)0.0249 (4)0.0331 (4)0.0023 (4)0.0009 (3)0.0012 (4)
P10.0226 (12)0.0289 (13)0.0347 (13)0.0017 (12)0.0025 (9)0.0029 (13)
B10.020 (6)0.034 (7)0.049 (7)0.002 (5)0.001 (5)0.000 (6)
O10.085 (5)0.058 (5)0.094 (6)0.004 (4)0.028 (4)0.005 (4)
Geometric parameters (Å, º) top
C1—N11.344 (9)C21—H210.9500
C1—C21.385 (10)C22—C231.387 (10)
C1—H10.9500C22—C271.401 (10)
C2—C31.350 (10)C22—P11.835 (9)
C2—H20.9500C23—C241.397 (11)
C3—N21.335 (9)C23—H230.9500
C3—H30.9500C24—C251.355 (11)
C4—N31.348 (9)C24—H240.9500
C4—C51.371 (10)C25—C261.376 (11)
C4—H40.9500C25—H250.9500
C5—C61.370 (11)C26—C271.377 (10)
C5—H50.9500C26—H260.9500
C6—N41.353 (8)C27—H270.9500
C6—H60.9500C28—N71.480 (9)
C7—N51.337 (9)C28—H28A0.9800
C7—C81.388 (10)C28—H28B0.9800
C7—H70.9500C28—H28C0.9800
C8—C91.363 (10)C29—N81.452 (9)
C8—H80.9500C29—H29A0.9800
C9—N61.338 (9)C29—H29B0.9800
C9—H90.9500C29—H29C0.9800
C10—C111.387 (9)C30—Cl21.695 (10)
C10—C151.397 (10)C30—Cl11.735 (11)
C10—P11.854 (8)C30—H30A0.9900
C11—C121.406 (9)C30—H30B0.9900
C11—H110.9500N1—N21.360 (8)
C12—C131.377 (10)N1—Ru12.083 (6)
C12—H120.9500N2—B11.545 (11)
C13—C141.364 (10)N3—N41.359 (7)
C13—H130.9500N3—Ru12.091 (6)
C14—C151.400 (10)N4—B11.560 (11)
C14—H140.9500N5—N61.357 (8)
C15—H150.9500N5—Ru12.129 (6)
C16—C211.387 (9)N6—B11.551 (10)
C16—C171.390 (10)N7—Ru12.143 (5)
C16—P11.847 (8)N7—H7A0.9200
C17—C181.392 (10)N7—H7B0.9200
C17—H170.9500N8—Ru12.156 (6)
C18—C191.362 (10)N8—H8A0.9200
C18—H180.9500N8—H8B0.9200
C19—C201.361 (11)Ru1—P12.297 (2)
C19—H190.9500B1—H1C1.0000
C20—C211.400 (10)O1—H1A0.8276
C20—H200.9500O1—H1B0.8319
N1—C1—C2110.0 (8)C26—C27—H27118.5
N1—C1—H1125.0C22—C27—H27118.5
C2—C1—H1125.0N7—C28—H28A109.5
C3—C2—C1105.5 (9)N7—C28—H28B109.5
C3—C2—H2127.3H28A—C28—H28B109.5
C1—C2—H2127.3N7—C28—H28C109.5
N2—C3—C2109.0 (8)H28A—C28—H28C109.5
N2—C3—H3125.5H28B—C28—H28C109.5
C2—C3—H3125.5N8—C29—H29A109.5
N3—C4—C5110.1 (8)N8—C29—H29B109.5
N3—C4—H4125.0H29A—C29—H29B109.5
C5—C4—H4125.0N8—C29—H29C109.5
C6—C5—C4107.1 (8)H29A—C29—H29C109.5
C6—C5—H5126.4H29B—C29—H29C109.5
C4—C5—H5126.4Cl2—C30—Cl1114.6 (6)
N4—C6—C5106.3 (8)Cl2—C30—H30A108.6
N4—C6—H6126.9Cl1—C30—H30A108.6
C5—C6—H6126.9Cl2—C30—H30B108.6
N5—C7—C8110.5 (8)Cl1—C30—H30B108.6
N5—C7—H7124.7H30A—C30—H30B107.6
C8—C7—H7124.7C1—N1—N2105.8 (7)
C9—C8—C7104.1 (8)C1—N1—Ru1134.9 (6)
C9—C8—H8128.0N2—N1—Ru1119.3 (5)
C7—C8—H8128.0C3—N2—N1109.8 (7)
N6—C9—C8110.1 (8)C3—N2—B1129.7 (8)
N6—C9—H9125.0N1—N2—B1120.4 (7)
C8—C9—H9125.0C4—N3—N4105.3 (6)
C11—C10—C15120.3 (7)C4—N3—Ru1137.4 (6)
C11—C10—P1120.7 (6)N4—N3—Ru1117.2 (5)
C15—C10—P1118.8 (6)C6—N4—N3111.2 (7)
C10—C11—C12118.7 (8)C6—N4—B1126.2 (7)
C10—C11—H11120.7N3—N4—B1122.5 (6)
C12—C11—H11120.7C7—N5—N6106.7 (7)
C13—C12—C11121.5 (8)C7—N5—Ru1134.6 (6)
C13—C12—H12119.3N6—N5—Ru1118.6 (5)
C11—C12—H12119.3C9—N6—N5108.7 (7)
C14—C13—C12118.9 (8)C9—N6—B1131.0 (7)
C14—C13—H13120.5N5—N6—B1120.2 (7)
C12—C13—H13120.5C28—N7—Ru1119.1 (5)
C13—C14—C15121.8 (9)C28—N7—H7A107.5
C13—C14—H14119.1Ru1—N7—H7A107.5
C15—C14—H14119.1C28—N7—H7B107.5
C10—C15—C14118.8 (8)Ru1—N7—H7B107.5
C10—C15—H15120.6H7A—N7—H7B107.0
C14—C15—H15120.6C29—N8—Ru1122.3 (5)
C21—C16—C17117.5 (8)C29—N8—H8A106.8
C21—C16—P1121.5 (6)Ru1—N8—H8A106.8
C17—C16—P1120.8 (6)C29—N8—H8B106.8
C16—C17—C18120.6 (8)Ru1—N8—H8B106.8
C16—C17—H17119.7H8A—N8—H8B106.6
C18—C17—H17119.7N1—Ru1—N387.4 (2)
C19—C18—C17121.2 (9)N1—Ru1—N587.7 (3)
C19—C18—H18119.4N3—Ru1—N584.0 (2)
C17—C18—H18119.4N1—Ru1—N788.9 (2)
C20—C19—C18119.1 (9)N3—Ru1—N7170.5 (2)
C20—C19—H19120.5N5—Ru1—N787.1 (2)
C18—C19—H19120.5N1—Ru1—N8174.9 (2)
C19—C20—C21120.8 (8)N3—Ru1—N893.7 (2)
C19—C20—H20119.6N5—Ru1—N887.4 (3)
C21—C20—H20119.6N7—Ru1—N889.2 (2)
C16—C21—C20120.7 (8)N1—Ru1—P192.90 (19)
C16—C21—H21119.6N3—Ru1—P193.67 (19)
C20—C21—H21119.6N5—Ru1—P1177.59 (17)
C23—C22—C27115.4 (8)N7—Ru1—P195.24 (18)
C23—C22—P1124.4 (7)N8—Ru1—P192.02 (18)
C27—C22—P1119.8 (6)C22—P1—C16104.6 (4)
C22—C23—C24122.0 (9)C22—P1—C1098.9 (4)
C22—C23—H23119.0C16—P1—C10101.8 (4)
C24—C23—H23119.0C22—P1—Ru1115.3 (3)
C25—C24—C23120.2 (9)C16—P1—Ru1115.2 (3)
C25—C24—H24119.9C10—P1—Ru1118.7 (3)
C23—C24—H24119.9N2—B1—N6107.8 (6)
C24—C25—C26120.0 (9)N2—B1—N4107.8 (7)
C24—C25—H25120.0N6—B1—N4105.5 (7)
C26—C25—H25120.0N2—B1—H1C111.8
C25—C26—C27119.4 (8)N6—B1—H1C111.8
C25—C26—H26120.3N4—B1—H1C111.8
C27—C26—H26120.3H1A—O1—H1B120.1
C26—C27—C22122.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7B···Cl30.922.543.430 (7)164
N8—H8A···Cl30.922.373.293 (6)178
O1—H1A···Cl30.832.583.342 (7)154
O1—H1B···Cl3i0.832.323.136 (7)166
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7B···Cl30.922.543.430 (7)164.1
N8—H8A···Cl30.922.373.293 (6)178.1
O1—H1A···Cl30.832.583.342 (7)154.1
O1—H1B···Cl3i0.832.323.136 (7)165.5
Symmetry code: (i) x+1, y+1, z.
Acknowledgements top

We gratefully acknowledge financial support from the National Science Council, Taiwan (NSC 99-2113-M-133-001-MY3), and from the Project of the Specific Research Fields, Taipei Municipal University of Education, Taiwan. We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University, Taiwan) for his assistance in the X-ray single-crystal structure analysis.

references
References top

Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Burrows, A. D. (2001). CrystEngComm, 46, 1–5.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Nonius (2000). COLLECT. Nonius B. V., Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561–3575.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.