[Journal logo]

Volume 68 
Part 11 
Pages o3227-o3228  
November 2012  

Received 24 September 2012
Accepted 23 October 2012
Online 27 October 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.032
wR = 0.084
Data-to-parameter ratio = 20.0
Details
Open access

DL-Tyrosinium chloride dihydrate

aUnité de Recherche Chimie de l'Environnement et Moleculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
Correspondence e-mail: Lamiabendjeddou@yahoo.fr

In the title compound, C9H12NO3+·Cl-·2H2O, the cation has a protonated amino group resulting from proton transfer from chloridric acid. The structure displays double layers parallel to the [010] direction held together by N-H...O, N-H...Cl, O-H...O and O-H...Cl hydrogen bonds. These layers are stacked along the c axis at b = 1/2; within each layer, the tyrosinium cations are arranged in an alternating head-to-tail sequence, forming inversion dimers [R22(10) motif]. The water molecules allow for the construction of a three-dimensional hydrogen-bonded network formed by centrosymmetric R66(28) and R88(34) motifs.

Related literature

For other examples of organic salts of amino acids, see: Zeghouan et al. (2012[Zeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959-o2960.]); Guenifa et al. (2009[Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264-o2265.]). For the structure of bis(L-tyrosinium) sulfate monohydrate, see: Sridhar et al. (2002[Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2002). Acta Cryst. E58, o211-o214.]). For other examples of amino acids with non-polar side chains, see: Torii & Iitaka (1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]); Harding & Long (1968[Harding, M. M. & Long, H. A. (1968). Acta Cryst. B24, 1096-1102.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12NO3+·Cl-·2H2O

  • Mr = 253.68

  • Triclinic, [P \overline 1]

  • a = 5.3330 (2) Å

  • b = 10.9634 (5) Å

  • c = 11.2500 (4) Å

  • [alpha] = 113.642 (4)°

  • [beta] = 94.359 (3)°

  • [gamma] = 98.465 (3)°

  • V = 589.34 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.33 mm-1

  • T = 100 K

  • 0.3 × 0.03 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire CCD diffractometer

  • 12044 measured reflections

  • 3445 independent reflections

  • 2780 reflections with I > 2[sigma](I)

  • Rint = 0.034

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.02

  • 3445 reflections

  • 172 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.43 e Å-3

  • [Delta][rho]min = -0.30 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1N...Cl1 0.90 (1) 2.36 (1) 3.2326 (12) 162 (1)
N1-H2N...Cl1i 0.92 (1) 2.44 (1) 3.2872 (12) 154 (1)
N1-H2N...O3i 0.92 (1) 2.40 (2) 2.9574 (15) 119 (1)
N1-H3N...Cl1ii 0.90 (1) 2.32 (1) 3.2151 (12) 176 (1)
O1-H1...Cl1iii 0.84 (2) 2.36 (2) 3.1858 (11) 169 (1)
O2-H2...O2Wi 0.89 (1) 1.64 (1) 2.5319 (15) 174 (2)
O1W-H11W...O1iv 0.84 (1) 2.10 (1) 2.9044 (13) 162 (2)
O1W-H12W...Cl1v 0.85 (1) 2.33 (1) 3.1784 (11) 172 (2)
O2W-H21W...O1Wi 0.83 (1) 1.91 (1) 2.7429 (14) 173 (2)
O2W-H22W...O1Wvi 0.85 (2) 2.02 (2) 2.8318 (15) 161 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2; (iv) x, y, z-1; (v) -x, -y+1, -z+1; (vi) x+1, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wroclaw, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wroclaw, Poland.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ .])'.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2187 ).


Acknowledgements

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  [CrossRef] [ISI] [details]
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  [CrossRef] [ChemPort] [details]
Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264-o2265.  [CSD] [CrossRef] [details]
Harding, M. M. & Long, H. A. (1968). Acta Cryst. B24, 1096-1102.  [CrossRef] [ChemPort] [details]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.  [CrossRef] [details]
Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wroclaw, Poland.
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ .
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2002). Acta Cryst. E58, o211-o214.  [CrossRef] [details]
Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.  [CrossRef] [ChemPort] [details]
Zeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959-o2960.  [CrossRef] [details]


Acta Cryst (2012). E68, o3227-o3228   [ doi:10.1107/S1600536812043899 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.