supplementary materials


nk2187 scheme

Acta Cryst. (2012). E68, o3227-o3228    [ doi:10.1107/S1600536812043899 ]

DL-Tyrosinium chloride dihydrate

F. Guenifa, L. Bendjeddou, A. Cherouana, S. Dahaoui and C. Lecomte

Abstract top

In the title compound, C9H12NO3+·Cl-·2H2O, the cation has a protonated amino group resulting from proton transfer from chloridric acid. The structure displays double layers parallel to the [010] direction held together by N-H...O, N-H...Cl, O-H...O and O-H...Cl hydrogen bonds. These layers are stacked along the c axis at b = 1/2; within each layer, the tyrosinium cations are arranged in an alternating head-to-tail sequence, forming inversion dimers [R22(10) motif]. The water molecules allow for the construction of a three-dimensional hydrogen-bonded network formed by centrosymmetric R66(28) and R88(34) motifs.

Comment top

We report the crystal structure of DL-tyrosinium chloride dihydrate (I), as part of our research with organic salts of amino acids (Zeghouan et al., 2012; Guenifa et al., 2009).

The asymmetric unit of (I) contains a tyrosinium cation, chloride anion and two water molecules (Fig.1). As expected, tyrosine form protonated units in (I) with the transfer of an H atom from chloridric acid. A similar situation is observed in bis(L-tyrosinium) sulfate monohydrate, (Sridhar et al., 2002).

In the crystal structure of (I), the ions are connected into a three-dimensional hydrogen-bonded network via N—H···O, N—H···Cl, O—H···O and O—H···Cl hydrogen bonds (Table 1). The tyrosinium cations are held together by N—H···O hydrogen bonds, forming a centrosymmetric dimer (R22(10) motif; Bernstein et al., 1995) centred at (1/2, 1/2, 1/2). This centrosymmetric dimer is further connected along [100] direction to either side of the chloride anions by N—H···Cl hydrogen bonds [R24(8) and R35(13) motifs] (Fig. 2). The aggregation of the rings motifs results in an overall two-dimensional hydrogen-bonded network.

The water molecules, which plays a dual role as both donor and acceptor in hydrogen bonding interactions, generating the centrosymmetric hydrogen-bonded (R24(8) motif) via O2w—H21w···O1w(i) and O2w—H22w···O1w(vi) (Fig. 3), and are involved in two centred hydrogen bonding with the cations to produce a centrosymmetric R66(28) and R88(34) motifs, thus completing the three-dimensional hydrogen-bonded network. The structures of many amino acids with non-polar side chains have the arrangement of a double layers of carboxyl and amino groups held together by hydrogen bonds (Torii & Iitaka, 1973; Harding & Long, 1968).

The molecule packing of (I), consists of double layers stacked along the c axis, at b = 1/2, where in each layer the tyrosinium cations are arranged with alternating head-to-tail sequence.

Related literature top

For other examples of organic salts of amino acids, see: Zeghouan et al. (2012); Guenifa et al. (2009). For the structure of bis(L-tyrosinium) sulfate monohydrate, see: Sridhar et al. (2002). For other examples of amino acids with non-polar side chains, see: Torii & Iitaka (1973); Harding & Long (1968). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The compound was obtained as colourless crystals with melting points of 370°, after few days, by slow evaporation from an aqueous solution of tyrosine and chloridric acid in stoechiometric ratio of 1:1.

Refinement top

The methine, methylene, and aromatic H atoms were placed at calculated positions respectively with C—H fixed at 0.98 Å (AFIX 13), 0.97 Å (AFIX 23), and C—H = 0.93 Å (Afix 43). All H atom attached to N or O were initially located by difference maps with restraint of the N—H bond length to 0.90 (2) Å (DFIX), and U fixed to be 1.2 times that of the N1; and O—H bond length to 0.85 (2) Å (DFIX) for hydroxyl group and 0.85 (1) Å (DFIX) for water molecule with H···H = 1.39 (2) and U fixed to be 1.5 times that of the o1, O2, o1w and o2w.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004)'.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) (Fig.1), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structures, showing the formation of dimers via N—H···O hydrogen bonds, and the aggregation of R22(10), R24(8) and R35(13) motifs [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z]. For the sake of clarity, the water molecules in (I), and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled.
[Figure 3] Fig. 3. Packing view of (I) showing the aggregation of R24(8), R66(28) and R88(34) hydrogen-bonding motifs. [Symmetry codes:(i) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2]. For the sake of clarity, the chloride anions, and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled.
DL-tyrosinium chloride dihydrate top
Crystal data top
C9H12NO3+·Cl·2H2OZ = 2
Mr = 253.68F(000) = 268
Triclinic, P1Dx = 1.43 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3330 (2) ÅCell parameters from 12044 reflections
b = 10.9634 (5) Åθ = 3.4–30.0°
c = 11.2500 (4) ŵ = 0.33 mm1
α = 113.642 (4)°T = 100 K
β = 94.359 (3)°Needle, colourless
γ = 98.465 (3)°0.3 × 0.03 × 0.02 mm
V = 589.34 (5) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire CCD
diffractometer
2780 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 30.0°, θmin = 3.4°
ω scansh = 77
12044 measured reflectionsk = 1515
3445 independent reflectionsl = 1515
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0483P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.43 e Å3
3445 reflectionsΔρmin = 0.30 e Å3
172 parameters
Crystal data top
C9H12NO3+·Cl·2H2Oγ = 98.465 (3)°
Mr = 253.68V = 589.34 (5) Å3
Triclinic, P1Z = 2
a = 5.3330 (2) ÅMo Kα radiation
b = 10.9634 (5) ŵ = 0.33 mm1
c = 11.2500 (4) ÅT = 100 K
α = 113.642 (4)°0.3 × 0.03 × 0.02 mm
β = 94.359 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire CCD
diffractometer
2780 reflections with I > 2σ(I)
12044 measured reflectionsRint = 0.034
3445 independent reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.43 e Å3
S = 1.02Δρmin = 0.30 e Å3
3445 reflectionsAbsolute structure: ?
172 parametersFlack parameter: ?
11 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26233 (5)0.45517 (3)0.68584 (3)0.01279 (8)
O20.63481 (17)0.90937 (9)0.68369 (9)0.0169 (2)
O10.43456 (17)0.69839 (9)1.18096 (9)0.0162 (2)
O1W0.07015 (18)0.82478 (9)0.34641 (9)0.0165 (2)
H12W0.008 (3)0.7497 (11)0.3437 (15)0.025*
H11W0.177 (2)0.8037 (15)0.2947 (14)0.025*
O30.40595 (16)0.69671 (9)0.58151 (9)0.01381 (19)
O2W0.7642 (2)0.02475 (10)0.39042 (10)0.0255 (2)
H22W0.832 (3)0.0447 (13)0.3609 (15)0.038*
H21W0.807 (3)0.0653 (16)0.4715 (9)0.038*
N10.7923 (2)0.58230 (10)0.62048 (11)0.0113 (2)
C50.8819 (2)0.66936 (12)0.94214 (12)0.0130 (2)
H51.00260.61790.90520.016*
C60.7489 (2)0.64160 (12)1.03283 (12)0.0135 (2)
H60.77960.5721.05580.016*
C10.6041 (2)0.77693 (12)0.63928 (12)0.0107 (2)
C70.5693 (2)0.71907 (12)1.08898 (12)0.0116 (2)
C30.9865 (2)0.80241 (12)0.80762 (12)0.0121 (2)
H3A1.15050.77480.81170.015*
H3B1.02060.89970.83370.015*
C90.6553 (2)0.84770 (12)0.96215 (12)0.0122 (2)
H90.62240.91650.93840.015*
C20.8520 (2)0.73226 (12)0.66507 (12)0.0108 (2)
H2A0.97080.75230.61010.013*
C80.5211 (2)0.82194 (12)1.05327 (12)0.0128 (2)
H80.39990.87311.09010.015*
C40.8385 (2)0.77273 (12)0.90528 (11)0.0109 (2)
H3N0.925 (2)0.5502 (14)0.6426 (14)0.013*
H2N0.758 (3)0.5428 (14)0.5303 (12)0.013*
H1N0.657 (2)0.5615 (14)0.6569 (13)0.013*
H10.500 (3)0.6478 (14)1.2082 (15)0.016*
H20.494 (2)0.9367 (14)0.6636 (14)0.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01191 (14)0.01584 (14)0.01394 (15)0.00480 (11)0.00313 (10)0.00869 (11)
O20.0146 (4)0.0119 (4)0.0229 (5)0.0042 (4)0.0028 (4)0.0065 (4)
O10.0190 (5)0.0204 (5)0.0170 (5)0.0102 (4)0.0075 (4)0.0128 (4)
O1W0.0177 (5)0.0145 (4)0.0176 (5)0.0041 (4)0.0055 (4)0.0061 (4)
O30.0111 (4)0.0137 (4)0.0161 (5)0.0032 (3)0.0010 (3)0.0055 (4)
O2W0.0305 (6)0.0247 (5)0.0180 (5)0.0184 (5)0.0029 (4)0.0022 (4)
N10.0103 (5)0.0130 (5)0.0108 (5)0.0045 (4)0.0012 (4)0.0045 (4)
C50.0127 (5)0.0140 (6)0.0121 (6)0.0066 (5)0.0013 (4)0.0041 (5)
C60.0161 (6)0.0136 (6)0.0128 (6)0.0066 (5)0.0014 (5)0.0064 (5)
C10.0127 (5)0.0131 (5)0.0084 (6)0.0045 (5)0.0031 (4)0.0056 (4)
C70.0113 (5)0.0134 (5)0.0091 (6)0.0018 (4)0.0006 (4)0.0043 (4)
C30.0105 (5)0.0136 (6)0.0115 (6)0.0020 (5)0.0004 (4)0.0050 (5)
C90.0140 (6)0.0106 (5)0.0126 (6)0.0037 (5)0.0001 (5)0.0053 (5)
C20.0103 (5)0.0120 (5)0.0113 (6)0.0026 (4)0.0016 (4)0.0058 (5)
C80.0133 (6)0.0122 (5)0.0131 (6)0.0059 (5)0.0024 (5)0.0041 (5)
C40.0095 (5)0.0115 (5)0.0087 (6)0.0002 (4)0.0021 (4)0.0025 (4)
Geometric parameters (Å, º) top
O1—C71.3754 (16)C3—C41.5096 (17)
O2—C11.3117 (17)C4—C91.3961 (16)
O3—C11.2150 (15)C4—C51.3962 (19)
O1—H10.837 (17)C5—C61.3900 (18)
O2—H20.894 (12)C6—C71.3925 (17)
O1W—H11W0.835 (12)C7—C81.390 (2)
O1W—H12W0.854 (14)C8—C91.3882 (18)
O2W—H21W0.834 (9)C2—H2A0.9800
O2W—H22W0.847 (16)C3—H3A0.9700
N1—C21.4887 (18)C3—H3B0.9700
N1—H2N0.920 (12)C5—H50.9300
N1—H1N0.901 (13)C6—H60.9300
N1—H3N0.896 (13)C8—H80.9300
C1—C21.5225 (16)C9—H90.9300
C2—C31.5334 (17)
C7—O1—H1109.9 (11)O1—C7—C8117.48 (10)
C1—O2—H2112.8 (10)C6—C7—C8120.27 (11)
H11W—O1W—H12W105.2 (16)O1—C7—C6122.25 (12)
H21W—O2W—H22W109.8 (16)C7—C8—C9119.46 (11)
H1N—N1—H2N111.9 (13)C4—C9—C8121.56 (13)
C2—N1—H2N108.2 (10)N1—C2—H2A108.00
C2—N1—H3N112.5 (10)C3—C2—H2A108.00
H1N—N1—H3N109.5 (13)C1—C2—H2A108.00
C2—N1—H1N108.3 (10)C2—C3—H3B109.00
H2N—N1—H3N106.6 (14)C4—C3—H3A109.00
O2—C1—O3125.48 (11)H3A—C3—H3B108.00
O2—C1—C2111.91 (10)C4—C3—H3B109.00
O3—C1—C2122.60 (12)C2—C3—H3A109.00
N1—C2—C3110.77 (11)C4—C5—H5119.00
C1—C2—C3115.02 (10)C6—C5—H5119.00
N1—C2—C1107.62 (10)C7—C6—H6120.00
C2—C3—C4114.94 (10)C5—C6—H6120.00
C3—C4—C9121.35 (12)C7—C8—H8120.00
C3—C4—C5120.83 (10)C9—C8—H8120.00
C5—C4—C9117.82 (11)C8—C9—H9119.00
C4—C5—C6121.52 (11)C4—C9—H9119.00
C5—C6—C7119.36 (13)
O2—C1—C2—N1175.77 (10)C9—C4—C5—C60.28 (18)
O2—C1—C2—C351.79 (15)C3—C4—C9—C8179.15 (11)
O3—C1—C2—N15.77 (16)C5—C4—C9—C80.53 (18)
O3—C1—C2—C3129.75 (13)C4—C5—C6—C70.41 (18)
N1—C2—C3—C457.63 (13)C5—C6—C7—O1178.84 (11)
C1—C2—C3—C464.66 (16)C5—C6—C7—C80.88 (18)
C2—C3—C4—C594.83 (14)O1—C7—C8—C9179.09 (11)
C2—C3—C4—C985.50 (15)C6—C7—C8—C90.64 (18)
C3—C4—C5—C6179.40 (11)C7—C8—C9—C40.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.90 (1)2.36 (1)3.2326 (12)162 (1)
N1—H2N···Cl1i0.92 (1)2.44 (1)3.2872 (12)154 (1)
N1—H2N···O3i0.92 (1)2.40 (2)2.9574 (15)119 (1)
N1—H3N···Cl1ii0.90 (1)2.32 (1)3.2151 (12)176 (1)
O1—H1···Cl1iii0.84 (2)2.36 (2)3.1858 (11)169 (1)
O2—H2···O2Wi0.89 (1)1.64 (1)2.5319 (15)174 (2)
O1W—H11W···O1iv0.84 (1)2.10 (1)2.9044 (13)162 (2)
O1W—H12W···Cl1v0.85 (1)2.33 (1)3.1784 (11)172 (2)
O2W—H21W···O1Wi0.83 (1)1.91 (1)2.7429 (14)173 (2)
O2W—H22W···O1Wvi0.85 (2)2.02 (2)2.8318 (15)161 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y, z1; (v) x, y+1, z+1; (vi) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.901 (13)2.363 (13)3.2326 (12)162.3 (12)
N1—H2N···Cl1i0.920 (12)2.435 (13)3.2872 (12)154.1 (14)
N1—H2N···O3i0.920 (12)2.398 (15)2.9574 (15)119.2 (12)
N1—H3N···Cl1ii0.896 (13)2.320 (13)3.2151 (12)176.1 (14)
O1—H1···Cl1iii0.837 (17)2.361 (16)3.1858 (11)168.8 (14)
O2—H2···O2Wi0.894 (12)1.641 (13)2.5319 (15)173.6 (15)
O1W—H11W···O1iv0.835 (12)2.099 (13)2.9044 (13)161.8 (16)
O1W—H12W···Cl1v0.854 (14)2.330 (14)3.1784 (11)172.2 (15)
O2W—H21W···O1Wi0.834 (9)1.914 (10)2.7429 (14)173.1 (16)
O2W—H22W···O1Wvi0.847 (16)2.017 (16)2.8318 (15)161.3 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y, z1; (v) x, y+1, z+1; (vi) x+1, y1, z.
Acknowledgements top

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265.

Harding, M. M. & Long, H. A. (1968). Acta Cryst. B24, 1096–1102.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.

Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2002). Acta Cryst. E58, o211–o214.

Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799–2807.

Zeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959–o2960.