supplementary materials


pv2589 scheme

Acta Cryst. (2012). E68, o3078    [ doi:10.1107/S1600536812041086 ]

Diisopropylammonium hydrogen phenylphosphonate

M. Sarr, M. S. Boye, A. Diasse-Sarr, A. Grosjean and P. Guionneau

Abstract top

In the title salt, [(CH3)2CH]2NH2]+·[C6H5PO2(OH)]-, the anions are linked by pairs of O-H...O hydrogen bonds, forming inversion dimers. These dimers are bridged by the cations via N-H...O hydrogen bonds, leading to a three-dimensional structure.

Comment top

In the assymmetric unit of the title salt (Fig. 1), the anion, hydrogen phenylphosphonate (PhPO3H-), adopts a tetrahedral geometry, with three oxygen atoms and a benzene group with O—P—O and O—P—C angles in the ranges 109.58 (4) - 115.20 (4) and 105.24 (4) - 108.51 (4)°, respectively. Two P—O distances in the anion are close, (P1—O1 = 1.4932 (7) and P1—O3 = 1.5191 (7) Å) indicating the presence of extensive π-delocalization of the PO double bonds. The bond distance P1—O2 (1.5809 (7) Å for P—OH bond) is significantly longer than the other two P—O bonds. The P—O bond distances in the title salt agree very well with the corresponding bond distances reported in closely related compounds (Diop et al., 2012; Beckmann et al., 2003).

In the crystal, the anions are connected by O2—H6···O3 hydrogen bonds forming dimers about inversion centers. These pairs are then bridged through cations via N—H···O hydrogen bonds leading to a three-dimensional structure (Tab. 1 & Fig. 2).

Related literature top

For crystal structures of closely related compounds, see: Diop et al. (2012); Beckmann et al. (2003).

Experimental top

The title compound was synthesized by mixing [(CH3)2CH]2NH and PhPO3H2 in water (1/1 ratio). The precipitate obtained was filtered. The crystals suitable for X-ray crystallographic analysis were grown from a solution of water by slow evaporation at room temperature.

Refinement top

All H atoms were located from difference maps and were allowed to refine freely with Uiso.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The assymmetric unit of the title salt. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the O—-H···O and N—H···O hydrogen bonds (light-blue colored lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
Diisopropylammonium hydrogen phenylphosphonate top
Crystal data top
C6H16N+·C6H6O3PF(000) = 560
Mr = 259.28Dx = 1.259 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4223 reflections
a = 11.9166 (2) Åθ = 0.4–30.0°
b = 9.0982 (1) ŵ = 0.20 mm1
c = 12.8539 (1) ÅT = 293 K
β = 101.013 (1)°Prism, colourless
V = 1367.95 (3) Å30.88 × 0.63 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3990 independent reflections
Radiation source: fine-focus sealed tube3626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ scans, and ω scans with κθmax = 30.1°, θmin = 3.2°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.845, Tmax = 0.952k = 1212
7738 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.4747P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3990 reflectionsΔρmax = 0.38 e Å3
243 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C6H16N+·C6H6O3PV = 1367.95 (3) Å3
Mr = 259.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9166 (2) ŵ = 0.20 mm1
b = 9.0982 (1) ÅT = 293 K
c = 12.8539 (1) Å0.88 × 0.63 × 0.25 mm
β = 101.013 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3990 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3626 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.952Rint = 0.013
7738 measured reflectionsθmax = 30.1°
Refinement top
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.080Δρmax = 0.38 e Å3
S = 1.03Δρmin = 0.33 e Å3
3990 reflectionsAbsolute structure: ?
243 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The analytical data - % calculated (% found): C: 55.59 (55.64); H: 8.55 (8.91); N: 5.40 (5.58).

Infrared data (cm-1) [br= broad; s= strong; m=medium]

2694br νNH; 1148m, 1129 s, 1059, 1027m νPO3; 898 s δPO3; 752 m νPC; 708 s, 696 s νPh.

Melting point = 437–438 K

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.966159 (19)0.40247 (2)0.846319 (17)0.01271 (8)
O21.04330 (6)0.32302 (7)0.94386 (5)0.01729 (14)
N10.66048 (7)0.51553 (9)0.78554 (6)0.01430 (15)
C11.06532 (7)0.49048 (10)0.77593 (7)0.01453 (17)
C61.14485 (9)0.59178 (11)0.82778 (8)0.0222 (2)
C120.62928 (8)0.41946 (10)0.68876 (8)0.01742 (18)
C130.69808 (9)0.47210 (12)0.60787 (8)0.0225 (2)
C21.06337 (9)0.46114 (11)0.66912 (8)0.01979 (19)
C41.21864 (9)0.63037 (13)0.66783 (9)0.0270 (2)
C31.13968 (9)0.53095 (13)0.61530 (9)0.0256 (2)
C51.22118 (10)0.66111 (13)0.77426 (10)0.0287 (2)
O10.89926 (6)0.29081 (8)0.77497 (5)0.02025 (15)
C80.60257 (8)0.48352 (11)0.87717 (8)0.01757 (18)
C90.64492 (9)0.59615 (12)0.96314 (8)0.0215 (2)
C110.50164 (9)0.42810 (13)0.64537 (9)0.0245 (2)
C100.62574 (10)0.32619 (12)0.91508 (9)0.0257 (2)
O30.89542 (5)0.52144 (7)0.88605 (5)0.01657 (14)
H61.0624 (16)0.376 (2)0.9984 (15)0.054 (5)*
H170.7362 (12)0.5109 (14)0.8110 (11)0.022 (3)*
H160.6429 (12)0.6104 (16)0.7649 (11)0.028 (3)*
H210.5218 (11)0.4980 (14)0.8513 (10)0.018 (3)*
H180.6510 (11)0.3197 (15)0.7094 (10)0.020 (3)*
H100.6767 (12)0.5719 (16)0.5864 (11)0.029 (4)*
H70.7279 (12)0.5857 (15)0.9907 (11)0.027 (3)*
H120.6818 (13)0.4116 (16)0.5460 (12)0.034 (4)*
H90.6088 (13)0.5821 (17)1.0245 (12)0.036 (4)*
H110.7788 (13)0.4705 (16)0.6362 (12)0.032 (4)*
H80.6298 (13)0.6961 (18)0.9372 (12)0.035 (4)*
H130.4820 (12)0.3727 (17)0.5783 (12)0.034 (4)*
H200.7076 (13)0.3059 (16)0.9306 (11)0.029 (3)*
H190.5963 (13)0.3128 (18)0.9806 (13)0.041 (4)*
H150.4790 (13)0.5297 (17)0.6277 (12)0.034 (4)*
H140.4571 (13)0.3869 (16)0.6953 (12)0.034 (4)*
H220.5884 (13)0.2571 (18)0.8637 (13)0.038 (4)*
H51.1462 (12)0.6131 (15)0.9024 (11)0.028 (3)*
H31.2709 (13)0.6789 (17)0.6323 (12)0.037 (4)*
H41.2746 (13)0.7291 (18)0.8131 (12)0.040 (4)*
H21.1388 (13)0.5080 (17)0.5413 (12)0.034 (4)*
H11.0101 (12)0.3924 (16)0.6328 (11)0.027 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01307 (12)0.01214 (12)0.01264 (12)0.00065 (7)0.00175 (8)0.00020 (7)
O20.0219 (3)0.0150 (3)0.0141 (3)0.0025 (2)0.0012 (2)0.0012 (2)
N10.0134 (3)0.0143 (3)0.0154 (3)0.0003 (3)0.0031 (3)0.0005 (3)
C10.0141 (4)0.0135 (4)0.0161 (4)0.0019 (3)0.0032 (3)0.0015 (3)
C60.0229 (5)0.0226 (5)0.0214 (5)0.0063 (4)0.0051 (4)0.0012 (4)
C120.0184 (4)0.0157 (4)0.0179 (4)0.0004 (3)0.0027 (3)0.0029 (3)
C130.0214 (5)0.0297 (5)0.0171 (4)0.0020 (4)0.0049 (4)0.0015 (4)
C20.0207 (4)0.0222 (5)0.0171 (4)0.0005 (4)0.0052 (3)0.0001 (3)
C40.0241 (5)0.0279 (5)0.0321 (6)0.0004 (4)0.0129 (4)0.0102 (4)
C30.0275 (5)0.0309 (6)0.0209 (5)0.0033 (4)0.0110 (4)0.0049 (4)
C50.0262 (5)0.0280 (5)0.0326 (6)0.0105 (4)0.0077 (4)0.0014 (4)
O10.0231 (3)0.0169 (3)0.0193 (3)0.0056 (3)0.0003 (3)0.0021 (3)
C80.0148 (4)0.0209 (4)0.0182 (4)0.0006 (3)0.0064 (3)0.0026 (3)
C90.0228 (5)0.0247 (5)0.0179 (4)0.0034 (4)0.0065 (4)0.0007 (4)
C110.0190 (4)0.0267 (5)0.0263 (5)0.0035 (4)0.0005 (4)0.0067 (4)
C100.0306 (5)0.0215 (5)0.0264 (5)0.0017 (4)0.0089 (4)0.0066 (4)
O30.0137 (3)0.0197 (3)0.0161 (3)0.0026 (2)0.0023 (2)0.0017 (2)
Geometric parameters (Å, º) top
P1—O11.4932 (7)C2—C31.3962 (14)
P1—O31.5191 (7)C2—H10.948 (14)
P1—O21.5809 (7)C4—C31.3845 (17)
P1—C11.8068 (9)C4—C51.3910 (16)
O2—H60.847 (19)C4—H30.949 (15)
N1—C81.5030 (12)C3—H20.972 (15)
N1—C121.5077 (12)C5—H40.957 (16)
N1—H170.900 (14)C8—C101.5202 (14)
N1—H160.916 (15)C8—C91.5208 (14)
C1—C21.3945 (13)C8—H210.965 (13)
C1—C61.3966 (13)C9—H70.989 (15)
C6—C51.3920 (14)C9—H90.976 (15)
C6—H50.976 (14)C9—H80.973 (16)
C12—C111.5188 (14)C11—H130.987 (15)
C12—C131.5193 (14)C11—H150.977 (16)
C12—H180.967 (13)C11—H140.982 (15)
C13—H100.969 (15)C10—H200.976 (15)
C13—H120.957 (15)C10—H190.980 (16)
C13—H110.961 (15)C10—H220.957 (16)
O1—P1—O3115.20 (4)C3—C4—C5119.74 (9)
O1—P1—O2109.72 (4)C3—C4—H3121.1 (9)
O3—P1—O2109.58 (4)C5—C4—H3119.1 (9)
O1—P1—C1108.51 (4)C4—C3—C2120.12 (10)
O3—P1—C1108.10 (4)C4—C3—H2119.8 (9)
O2—P1—C1105.24 (4)C2—C3—H2120.1 (9)
P1—O2—H6114.8 (12)C4—C5—C6120.10 (10)
C8—N1—C12117.16 (7)C4—C5—H4122.1 (10)
C8—N1—H17106.5 (8)C6—C5—H4117.8 (10)
C12—N1—H17110.1 (8)N1—C8—C10110.56 (8)
C8—N1—H16107.3 (9)N1—C8—C9107.49 (8)
C12—N1—H16107.5 (9)C10—C8—C9112.76 (9)
H17—N1—H16107.9 (12)N1—C8—H21106.3 (7)
C2—C1—C6118.58 (9)C10—C8—H21110.3 (8)
C2—C1—P1121.24 (7)C9—C8—H21109.2 (7)
C6—C1—P1120.17 (7)C8—C9—H7111.5 (8)
C5—C6—C1120.74 (10)C8—C9—H9111.2 (9)
C5—C6—H5120.4 (8)H7—C9—H9105.2 (12)
C1—C6—H5118.8 (8)C8—C9—H8111.5 (9)
N1—C12—C11110.17 (8)H7—C9—H8108.6 (12)
N1—C12—C13107.55 (8)H9—C9—H8108.5 (12)
C11—C12—C13111.46 (9)C12—C11—H13110.3 (8)
N1—C12—H18107.9 (8)C12—C11—H15110.3 (9)
C11—C12—H18110.2 (8)H13—C11—H15105.8 (12)
C13—C12—H18109.5 (7)C12—C11—H14111.6 (9)
C12—C13—H10110.1 (8)H13—C11—H14108.0 (12)
C12—C13—H12109.8 (9)H15—C11—H14110.7 (12)
H10—C13—H12107.5 (12)C8—C10—H20110.9 (8)
C12—C13—H11111.6 (9)C8—C10—H19108.6 (9)
H10—C13—H11108.2 (12)H20—C10—H19108.0 (12)
H12—C13—H11109.6 (12)C8—C10—H22111.4 (9)
C1—C2—C3120.72 (10)H20—C10—H22109.3 (12)
C1—C2—H1119.7 (8)H19—C10—H22108.3 (13)
C3—C2—H1119.6 (8)
O1—P1—C1—C26.07 (9)C8—N1—C12—C13179.89 (8)
O3—P1—C1—C2119.51 (8)C6—C1—C2—C30.34 (14)
O2—P1—C1—C2123.46 (8)P1—C1—C2—C3179.35 (8)
O1—P1—C1—C6174.93 (8)C5—C4—C3—C20.39 (17)
O3—P1—C1—C659.48 (8)C1—C2—C3—C40.11 (16)
O2—P1—C1—C657.55 (8)C3—C4—C5—C60.21 (18)
C2—C1—C6—C50.53 (15)C1—C6—C5—C40.26 (17)
P1—C1—C6—C5179.55 (8)C12—N1—C8—C1058.07 (11)
C8—N1—C12—C1158.44 (11)C12—N1—C8—C9178.48 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H17···O30.900 (14)1.960 (14)2.8510 (10)170.3 (12)
O2—H6···O3i0.847 (19)1.744 (19)2.5895 (10)177.4 (19)
N1—H16···O1ii0.916 (15)1.764 (15)2.6782 (10)176.7 (13)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H17···O30.900 (14)1.960 (14)2.8510 (10)170.3 (12)
O2—H6···O3i0.847 (19)1.744 (19)2.5895 (10)177.4 (19)
N1—H16···O1ii0.916 (15)1.764 (15)2.6782 (10)176.7 (13)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3/2, y+1/2, z+3/2.
references
References top

Beckmann, J., Dakternieks, D. & Duthie, A. (2003). Appl. Organomet. Chem. 17, 817–818.

Diop, T., Diop, L., Maris, T. & Stoeckli-Evans, H. (2012). Acta Cryst. E68, o1432.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.