supplementary materials


qm2083 scheme

Acta Cryst. (2012). E68, o3243    [ doi:10.1107/S1600536812042857 ]

4-(2-Fluorobenzoyl)-1-[2-(4-hydroxyphenyl)-2-oxoethyl]piperazin-1-ium trifluoroacetate

F. Bian, Y. Jin, S. Chi, G. Shi and S. Xu

Abstract top

In the crystal structure of the title compound, C19H20FN2O3+·C2F3O2-, N-H...O and O-H...O hydrogen bonds link two cations and two anions into a 22-atom ring. These rings are further linked into a three dimensional network by weak C-H...O contacts.

Related literature top

For the preparation for the title compound, see: Hoff et al. (2005); Wallén et al. (2003); Stachulski et al. (2006). For similar structures, see: Luedtkea & Mach (2003); Rok et al. (2007); Friedel & Crafts (1932a,b). For the applications of similar compounds, see: Wise (1996).

Experimental top

The title compound was obtained through the following four steps: 2-fluorobenzoic acid (700 mg, 5 mmol) was dissolved into 3 ml of SOCl2, the mixture stirred at 1033 K for 5 h and then slowly cooled to room temperature before removing excess SOCl2. After preparing an ethanol solution (10 ml) of 2-fluorobenzoyl chloride (317 mg, 2 mmol) and 1-boc-piperazine (372 mg, 4 mmol), potassium carbonate (552 mg, 4 mmol) was added to the solution. The mixture was refluxed for 12 h and then cooled to room temperature; extraction and concentration were performed to obtain an oil. After mixing the oil (a dichloromethane solution, 10 ml) with TFA (1.5 ml) and stirring for 12 h to complete the reaction, the mixture was poured into water. The aqueous layer was extracted by ethyl acetate, and then the organic layer was separated, dried using sodium sulfate to obtain 4-(2-fluorobenzoyl)piperazin-1-ium trifluoroacetate. Potassium carbonate (276 mg, 2 mmol) was added to the prepared ethanol solution (10 ml) of (2-fluorophenyl)(piperazin-1-yl)methanone (208 mg, 1 mmol) and 2-chloro-1-(4-hydroxyphenyl)ethanone (341 mg, 2 mmol), which was refluxed for 5 h and mixed by adding water. Again the aqueous layer was extracted by ethyl acetate for the separation of the organic layer, washed using anhydrous ethyl acetate, and dried using sodium sulfate, filtered, and concentrated in vacuum. The purification of residue by using silica gel column chromatography and eluting with EtOAc–petroleum ether (1:1) produced the pale-yellow solid (yield: 164 mg, 48%) of 4-(2-fluorobenzoyl)-1-[2-(4-hydroxyphenyl)-2-oxoethyl]piperazin-1-ium trifluoroacetate.

Refinement top

Hatomswereplacedincalculatedpositions[C—H=0.93(aromatic) and O—H= 0.82 or0.96Å (methylgroup)]and refined using a ridingmodel approximation withUiso(H) constrainedto1.2 (aromatic) or 1.5(methyl,O—H)timesUeq of therespectiveparentatom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot
4-(2-Fluorobenzoyl)-1-[2-(4-hydroxyphenyl)-2-oxoethyl]piperazin-1-ium trifluoroacetate top
Crystal data top
C19H20FN2O3+·C2F3O2F(000) = 944
Mr = 456.39Dx = 1.432 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.055 (3) ÅCell parameters from 892 reflections
b = 9.601 (2) Åθ = 2.3–17.0°
c = 21.946 (5) ŵ = 0.13 mm1
β = 91.960 (4)°T = 298 K
V = 2117.4 (9) Å3Parallelepiped, colourless
Z = 40.23 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube1534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
phi and ω scansθmax = 25.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.956, Tmax = 0.971k = 011
12540 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H20FN2O3+·C2F3O2V = 2117.4 (9) Å3
Mr = 456.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.055 (3) ŵ = 0.13 mm1
b = 9.601 (2) ÅT = 298 K
c = 21.946 (5) Å0.23 × 0.20 × 0.18 mm
β = 91.960 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1534 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.971Rint = 0.070
12540 measured reflectionsθmax = 25.4°
Refinement top
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.240Δρmax = 0.26 e Å3
S = 1.03Δρmin = 0.20 e Å3
3824 reflectionsAbsolute structure: ?
289 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.6641 (4)0.7921 (4)0.35902 (18)0.1420 (13)
F20.0352 (4)0.0629 (4)0.3531 (2)0.1733 (18)
F30.0010 (4)0.2786 (4)0.35550 (19)0.1465 (15)
F40.0132 (4)0.1720 (4)0.27235 (19)0.1558 (16)
N10.9794 (3)0.7317 (3)0.17362 (14)0.0623 (9)
H1N1.06340.70320.16570.081*
N20.9521 (4)0.6187 (4)0.29247 (17)0.0772 (10)
O10.7573 (3)0.9834 (3)0.15804 (14)0.0945 (11)
H10.73041.06320.15330.123*
O21.0042 (3)0.6279 (3)0.05966 (14)0.0850 (9)
O30.7802 (4)0.5059 (4)0.33367 (18)0.1197 (13)
O40.2142 (4)0.0147 (4)0.3220 (2)0.1226 (14)
O50.2540 (3)0.2358 (4)0.34091 (16)0.0951 (11)
C10.7985 (4)0.9296 (5)0.1033 (2)0.0742 (12)
C20.8442 (5)0.7938 (5)0.1037 (2)0.0813 (13)
H20.84440.74420.14010.106*
C30.8891 (4)0.7321 (4)0.0505 (2)0.0753 (12)
H30.92000.64090.05120.098*
C40.8891 (4)0.8047 (4)0.00491 (19)0.0642 (11)
C50.8382 (4)0.9385 (4)0.0040 (2)0.0720 (12)
H50.83360.98740.04050.094*
C60.7943 (4)1.0014 (5)0.0493 (2)0.0766 (12)
H60.76181.09210.04880.100*
C70.9441 (4)0.7384 (4)0.06037 (19)0.0653 (11)
C80.9287 (5)0.8139 (4)0.12025 (18)0.0711 (12)
H8A0.97630.90160.11900.092*
H8B0.83530.83460.12530.092*
C90.8978 (5)0.6055 (4)0.1846 (2)0.0846 (14)
H9A0.89920.54490.14930.110*
H9B0.80630.63250.19080.110*
C100.9516 (5)0.5284 (4)0.2399 (2)0.0872 (14)
H10A0.89690.44730.24720.113*
H10B1.04150.49680.23290.113*
C111.0351 (5)0.7411 (4)0.28498 (18)0.0728 (12)
H11A1.12680.71270.28030.095*
H11B1.03140.79940.32100.095*
C120.9874 (4)0.8226 (4)0.22957 (18)0.0684 (11)
H12A0.90030.86140.23680.089*
H12B1.04800.89930.22280.089*
C130.8623 (5)0.6010 (6)0.3364 (2)0.0864 (14)
C140.8670 (5)0.6952 (5)0.3901 (2)0.0782 (13)
C150.7657 (6)0.7849 (6)0.4023 (3)0.0935 (15)
C160.7596 (7)0.8661 (6)0.4533 (3)0.1098 (19)
H160.68810.92510.45980.143*
C170.8654 (8)0.8552 (7)0.4944 (3)0.117 (2)
H170.86630.90950.52950.152*
C180.9690 (7)0.7671 (8)0.4851 (3)0.133 (2)
H181.04000.76090.51330.173*
C190.9659 (6)0.6875 (7)0.4329 (3)0.124 (2)
H191.03540.62550.42690.161*
C200.1836 (5)0.1356 (6)0.3310 (2)0.0810 (14)
C210.0321 (5)0.1635 (6)0.3290 (3)0.0932 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.138 (3)0.151 (3)0.135 (3)0.049 (2)0.022 (2)0.000 (2)
F20.103 (3)0.157 (3)0.262 (5)0.037 (2)0.036 (3)0.053 (3)
F30.120 (3)0.135 (3)0.185 (4)0.039 (2)0.010 (3)0.046 (3)
F40.137 (3)0.195 (4)0.131 (3)0.028 (3)0.059 (3)0.024 (3)
N10.068 (2)0.0591 (19)0.060 (2)0.0027 (16)0.0064 (16)0.0012 (15)
N20.089 (3)0.071 (2)0.073 (2)0.011 (2)0.016 (2)0.0063 (19)
O10.112 (3)0.094 (2)0.076 (2)0.0032 (18)0.0173 (19)0.0037 (17)
O20.099 (2)0.075 (2)0.081 (2)0.0236 (17)0.0098 (17)0.0025 (16)
O30.113 (3)0.121 (3)0.127 (3)0.045 (2)0.034 (2)0.004 (2)
O40.106 (3)0.093 (3)0.169 (4)0.002 (2)0.004 (3)0.007 (3)
O50.088 (2)0.093 (2)0.104 (3)0.0177 (19)0.0044 (19)0.0028 (19)
C10.072 (3)0.071 (3)0.079 (3)0.004 (2)0.009 (2)0.008 (2)
C20.092 (3)0.086 (3)0.066 (3)0.002 (3)0.008 (3)0.006 (2)
C30.078 (3)0.067 (3)0.082 (3)0.001 (2)0.013 (2)0.009 (2)
C40.067 (3)0.059 (2)0.067 (3)0.003 (2)0.003 (2)0.011 (2)
C50.079 (3)0.064 (3)0.072 (3)0.000 (2)0.001 (2)0.009 (2)
C60.076 (3)0.073 (3)0.080 (3)0.001 (2)0.002 (2)0.000 (2)
C70.065 (3)0.060 (3)0.072 (3)0.005 (2)0.011 (2)0.005 (2)
C80.087 (3)0.063 (2)0.063 (3)0.012 (2)0.001 (2)0.003 (2)
C90.097 (3)0.068 (3)0.088 (3)0.030 (3)0.010 (3)0.002 (2)
C100.104 (4)0.062 (3)0.096 (4)0.016 (2)0.017 (3)0.010 (3)
C110.081 (3)0.077 (3)0.061 (3)0.016 (2)0.001 (2)0.010 (2)
C120.077 (3)0.064 (2)0.064 (3)0.004 (2)0.004 (2)0.004 (2)
C130.083 (3)0.085 (3)0.092 (4)0.005 (3)0.012 (3)0.019 (3)
C140.068 (3)0.095 (3)0.073 (3)0.007 (3)0.013 (2)0.026 (3)
C150.090 (4)0.099 (4)0.091 (4)0.010 (3)0.003 (3)0.029 (3)
C160.148 (6)0.087 (4)0.097 (4)0.010 (4)0.034 (4)0.014 (3)
C170.140 (6)0.142 (6)0.070 (4)0.021 (5)0.015 (4)0.003 (3)
C180.095 (5)0.203 (7)0.102 (5)0.026 (5)0.004 (4)0.006 (5)
C190.095 (4)0.185 (6)0.092 (4)0.025 (4)0.014 (4)0.026 (4)
C200.105 (4)0.070 (3)0.067 (3)0.012 (3)0.000 (3)0.003 (2)
C210.078 (3)0.098 (4)0.104 (4)0.001 (3)0.001 (3)0.000 (3)
Geometric parameters (Å, º) top
F1—C151.372 (6)C6—H60.9300
F2—C211.301 (6)C7—C81.513 (5)
F3—C211.298 (6)C8—H8A0.9700
F4—C211.312 (6)C8—H8B0.9700
N1—C81.488 (5)C9—C101.505 (6)
N1—C91.488 (5)C9—H9A0.9700
N1—C121.506 (5)C9—H9B0.9700
N1—H1N0.9100C10—H10A0.9700
N2—C131.353 (6)C10—H10B0.9700
N2—C101.443 (5)C11—C121.510 (5)
N2—C111.454 (5)C11—H11A0.9700
O1—C11.360 (5)C11—H11B0.9700
O1—H10.8200C12—H12A0.9700
O2—C71.221 (4)C12—H12B0.9700
O3—C131.231 (5)C13—C141.486 (7)
O4—C201.219 (5)C14—C191.346 (7)
O5—C201.209 (5)C14—C151.368 (7)
C1—C61.373 (6)C15—C161.367 (7)
C1—C21.382 (6)C16—C171.375 (8)
C2—C31.372 (6)C16—H160.9300
C2—H20.9300C17—C181.363 (8)
C3—C41.402 (6)C17—H170.9300
C3—H30.9300C18—C191.377 (8)
C4—C51.383 (5)C18—H180.9300
C4—C71.465 (6)C19—H190.9300
C5—C61.376 (6)C20—C211.546 (7)
C5—H50.9300
C8—N1—C9112.6 (3)N2—C10—H10B109.7
C8—N1—C12110.0 (3)C9—C10—H10B109.7
C9—N1—C12110.7 (3)H10A—C10—H10B108.2
C8—N1—H1N107.8N2—C11—C12110.0 (3)
C9—N1—H1N107.8N2—C11—H11A109.7
C12—N1—H1N107.8C12—C11—H11A109.7
C13—N2—C10120.7 (4)N2—C11—H11B109.7
C13—N2—C11125.5 (4)C12—C11—H11B109.7
C10—N2—C11112.4 (3)H11A—C11—H11B108.2
C1—O1—H1109.5N1—C12—C11111.3 (3)
O1—C1—C6123.7 (4)N1—C12—H12A109.4
O1—C1—C2116.3 (4)C11—C12—H12A109.4
C6—C1—C2120.0 (4)N1—C12—H12B109.4
C3—C2—C1120.1 (4)C11—C12—H12B109.4
C3—C2—H2120.0H12A—C12—H12B108.0
C1—C2—H2120.0O3—C13—N2121.4 (5)
C2—C3—C4121.0 (4)O3—C13—C14119.5 (5)
C2—C3—H3119.5N2—C13—C14119.0 (5)
C4—C3—H3119.5C19—C14—C15115.9 (5)
C5—C4—C3117.4 (4)C19—C14—C13121.5 (5)
C5—C4—C7123.0 (4)C15—C14—C13122.3 (5)
C3—C4—C7119.6 (4)C16—C15—C14125.0 (6)
C6—C5—C4121.9 (4)C16—C15—F1119.0 (6)
C6—C5—H5119.1C14—C15—F1116.0 (5)
C4—C5—H5119.1C15—C16—C17116.0 (6)
C1—C6—C5119.7 (4)C15—C16—H16122.0
C1—C6—H6120.2C17—C16—H16122.0
C5—C6—H6120.2C18—C17—C16121.8 (6)
O2—C7—C4122.7 (4)C18—C17—H17119.1
O2—C7—C8119.5 (4)C16—C17—H17119.1
C4—C7—C8117.8 (4)C17—C18—C19118.2 (6)
N1—C8—C7112.8 (3)C17—C18—H18120.9
N1—C8—H8A109.0C19—C18—H18120.9
C7—C8—H8A109.0C14—C19—C18123.0 (6)
N1—C8—H8B109.0C14—C19—H19118.5
C7—C8—H8B109.0C18—C19—H19118.5
H8A—C8—H8B107.8O5—C20—O4129.6 (6)
N1—C9—C10110.3 (4)O5—C20—C21116.0 (5)
N1—C9—H9A109.6O4—C20—C21114.5 (5)
C10—C9—H9A109.6F3—C21—F2107.8 (5)
N1—C9—H9B109.6F3—C21—F4106.6 (5)
C10—C9—H9B109.6F2—C21—F4105.3 (5)
H9A—C9—H9B108.1F3—C21—C20113.7 (5)
N2—C10—C9109.9 (4)F2—C21—C20112.7 (5)
N2—C10—H10A109.7F4—C21—C20110.3 (5)
C9—C10—H10A109.7
O1—C1—C2—C3179.2 (4)N2—C11—C12—N154.0 (5)
C6—C1—C2—C32.0 (7)C10—N2—C13—O31.8 (7)
C1—C2—C3—C40.3 (7)C11—N2—C13—O3167.4 (4)
C2—C3—C4—C52.1 (6)C10—N2—C13—C14179.3 (4)
C2—C3—C4—C7176.9 (4)C11—N2—C13—C1415.1 (7)
C3—C4—C5—C62.8 (6)O3—C13—C14—C19106.7 (6)
C7—C4—C5—C6176.1 (4)N2—C13—C14—C1970.8 (6)
O1—C1—C6—C5180.0 (4)O3—C13—C14—C1566.8 (7)
C2—C1—C6—C51.4 (7)N2—C13—C14—C15115.7 (5)
C4—C5—C6—C11.1 (7)C19—C14—C15—C160.8 (8)
C5—C4—C7—O2170.3 (4)C13—C14—C15—C16174.7 (5)
C3—C4—C7—O28.6 (6)C19—C14—C15—F1179.4 (5)
C5—C4—C7—C87.6 (6)C13—C14—C15—F15.6 (7)
C3—C4—C7—C8173.5 (4)C14—C15—C16—C170.6 (8)
C9—N1—C8—C767.6 (4)F1—C15—C16—C17179.1 (5)
C12—N1—C8—C7168.4 (3)C15—C16—C17—C181.0 (9)
O2—C7—C8—N16.2 (6)C16—C17—C18—C190.0 (10)
C4—C7—C8—N1175.8 (3)C15—C14—C19—C181.9 (9)
C8—N1—C9—C10178.6 (4)C13—C14—C19—C18175.8 (6)
C12—N1—C9—C1055.1 (5)C17—C18—C19—C141.6 (11)
C13—N2—C10—C9106.7 (5)O5—C20—C21—F319.3 (7)
C11—N2—C10—C960.7 (5)O4—C20—C21—F3160.9 (5)
N1—C9—C10—N258.3 (5)O5—C20—C21—F2142.4 (5)
C13—N2—C11—C12108.2 (5)O4—C20—C21—F237.8 (7)
C10—N2—C11—C1258.4 (5)O5—C20—C21—F4100.3 (5)
C8—N1—C12—C11178.4 (3)O4—C20—C21—F479.5 (6)
C9—N1—C12—C1153.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.911.872.710 (5)152
O1—H1···O5ii0.821.952.697 (5)151
C8—H8B···O3i0.972.222.996 (6)136
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.911.872.710 (5)152.0
O1—H1···O5ii0.821.952.697 (5)151.1
C8—H8B···O3i0.972.222.996 (6)136.0
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z1/2.
Acknowledgements top

Support from the National Natural Science Foundation of China (21163024) is acknowledged.

references
References top

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Friedel, C. & Crafts, J. M. (1932a). Compt. Rend. 84, 1392–1395.

Friedel, C. & Crafts, J. M. (1932b). Compt. Rend. 84, 1450–1450.

Hoff, B., Strandberg, E., Ulrich, A. S., Tieleman, D. P. & Posten, C. (2005). Biophys. J. 88, 1818–1827.

Luedtkea, R. R. & Mach, R. H. (2003). Cur. Pharm. Design. 9, 643-671.

Rok, F., Stanislav, G. & Danijel, K. (2007). Tetrahedron. 63, 10698-10708.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stachulski, A. V., Berry, N. G., Low, A. C. L., Moores, S. L., Row, E., Warhurst, D. C., Adagu, I. S. & Rossignol, J.-F. (2006). J. Med. Chem. 49, 1450–1454.

Wallén, E. A. A., Christiaans, J. A. M., Jarho, E. M., Forsberg, M. M., Venäläinen, J. I., Mannisto, P. T. & Gynther, J. (2003). J. Med. Chem. 46, 4543–4551.

Wise, R. A. (1996). Curr Opin Neurobiology. 6, 243-251.