supplementary materials


qm2084 scheme

Acta Cryst. (2012). E68, m1369-m1370    [ doi:10.1107/S1600536812041955 ]

catena-Poly[[tetraaqua-[mu]-aqua-bis([mu]4-pyrimidine-2-carboxylato)tetralithium] dichloride]

W. Starosta and J. Leciejewicz

Abstract top

The asymmetric unit of the title compound, [Li4(C5H3N2O2)2(H2O)5]Cl2, contains two LiI cations, one with a distorted trigonal-bipyramidal and the other with a distorted tetrahedral coordination geometry. Two symmetry-related asymmetric units constitute a building block of the structure, in which both ligand carboxylate O atoms are bidentate and bridge the metal ions, forming a divalent cation. Charge balance is maintained by two chloride anions. The building blocks, bridged by LiI cations, form cationic ribbons with chloride anions in the space between them. The ribbons propagate in [010] and are held together by a network of weak O-H...O hydrogen bonds which operate in the space between adjacent ribbons.

Comment top

The asymmetric cell of the title compound contains two symmetry independent LiI ions, one deprotonated pyramidine-2-carboxylatato ligand molecule, three symmetry independent water molecules which are coordinated to metal ions and one chloride anion. The latter maintains charge balance in the cell. Two symmetry related cells form a molecular moiety which can be visualized as a building unit of the structure (Fig. 1).The ligand bridges Li ions in a µ4 mode using both its carboxylate O atoms which act as bidentate. Ligand bonding groups N1,O1 and N3,O2 chelate Li1 and Liii ions; the O1 and O2 atoms are also bonded to Li2 and Li2i ions, respectively. Since the Li1 and Li1ii ions are also coordinated by bonding groups from adjacent symmetry related ligands, a –Li1ii—O2—O1—Li1—O2iiiO1iii—Li1iii– bridging pathway is formed. Apart from two N,O bonding groups, Li1 coordination is completed by an aqua O3 atom. On the other hand, pairs of adjacent symmetry related Li2 and Li2i ions are bridged by an aqua O21 atom while the other coordinated to them aqua O22 and O22i atoms are not bridging. Symmetry code: i -x, y, -z + 1/2; ii x, -y + 2, z - 1/2; iii x, -y + 2, z + 1/2. Adjacent moieties linked along the Li1 bridging pathway form a cationic ribbon propagating in the unit cell b direction (Fig. 2). Chloride anions are located in the space between adjacent ribbons. Fig. 1 shows, that a ribbon can be visualized as built of centro-symmetric molecular clusters in which Li ions form a tetrameric entities additionally connected by Li2—O21—Li2i bridges. The Li1 ion exhibits a distorted trigonal bipyramidal coordination environment in which O1, O3 and N3iii atoms form an equatorial plane with a Li1 ion 0.0619 (2) Å out of it; N1 and O2iii atoms are at apical positions. The coordination of the Li2 ion is strongly distorted tetrahedral. The Li—O and Li—N bond distances (Table 1) are close to those reported in the structures of a Li complex with the title and nitrate ligands (Starosta & Leciejewicz, 2011) and pyrimidine-4-carboxylate and water ligands (Starosta & Leciejewicz, 2012). The pyrimidine ring is planar with r.m.s. of 0.0071 (1) Å; the C7/O1/O2 makes with it a dihedral angle of 5.8 (1)°. Weak hydrogen bonds in which water O atoms are as donors and chloride anions act as acceptors operate between adjacent ribbons (Table 2).

Related literature top

For the structure of a Li complex with pyrimidine-2-carboxylate and nitrate ligands, see: Starosta & Leciejewicz (2011). The structure of a LiI complex with pyrimidine-4-carboxylate and water ligands was reported recently by Starosta & Leciejewicz (2012).

Experimental top

1 mmol of methyl pyrimidine-2-carboxylate and ca2 mmol s of lithium hydroxide dissolved in 50 ml of hot, doubly distilled water were boiled under reflux with stirring for twenty hours. After evaporation to dryness at room temperature the polycrystalline material was dissolved in 50 ml of water. The solution was titrated with 1 N HCl until the pH reached 6.0 and then stirred for 3 h at ca 320 K. Left to crystallize at room temperature, colourless single-crystal blocks deposited after a week. They were washed with cold methanol and dried in the air.

Refinement top

Hydrogen atoms belonging to water molecules were located in a difference map and refined isotropically, while three H atoms attached to pyrimidine C atoms were located at calculated positions and treated as riding on the parent atoms with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of a cationic ribbon of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i -x, y, -z + 1/2; ii x, -y + 2, z - 1/2; iii x, -y + 2, z + 1/2; iv -x, -y + 2, z + 1.
[Figure 2] Fig. 2. The alignment of cationic ribbons and chloride anions in the structure of the title compound viewed along the unit cell b direction.
catena-Poly[[tetraaqua-µ-aqua-bis(µ4-pyrimidine-2-carboxylato)tetralithium] dichloride] top
Crystal data top
[Li4(C5H3N2O2)2(H2O)5]Cl2F(000) = 888
Mr = 434.93Dx = 1.501 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 22.084 (4) Åθ = 6–15°
b = 8.0773 (16) ŵ = 0.39 mm1
c = 10.814 (2) ÅT = 293 K
β = 94.08 (3)°Block, colourless
V = 1924.1 (7) Å30.37 × 0.24 × 0.18 mm
Z = 4
Data collection top
Kuma KM4 four-circle
diffractometer
1781 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 30.1°, θmin = 1.9°
profile data from ω/2θ scansh = 3131
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 110
Tmin = 0.917, Tmax = 0.935l = 015
2964 measured reflections3 standard reflections every 200 reflections
2819 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0879P)2 + 1.2478P]
where P = (Fo2 + 2Fc2)/3
2819 reflections(Δ/σ)max = 0.004
152 parametersΔρmax = 0.51 e Å3
4 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Li4(C5H3N2O2)2(H2O)5]Cl2V = 1924.1 (7) Å3
Mr = 434.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.084 (4) ŵ = 0.39 mm1
b = 8.0773 (16) ÅT = 293 K
c = 10.814 (2) Å0.37 × 0.24 × 0.18 mm
β = 94.08 (3)°
Data collection top
Kuma KM4 four-circle
diffractometer
1781 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.029
Tmin = 0.917, Tmax = 0.935θmax = 30.1°
2964 measured reflections3 standard reflections every 200 reflections
2819 independent reflections intensity decay: 2.3%
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147Δρmax = 0.51 e Å3
S = 1.02Δρmin = 0.36 e Å3
2819 reflectionsAbsolute structure: ?
152 parametersFlack parameter: ?
4 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08301 (6)0.92604 (19)0.37614 (11)0.0321 (3)
O20.08768 (6)0.96441 (19)0.17202 (11)0.0319 (3)
N30.20103 (7)1.0854 (2)0.20733 (13)0.0277 (3)
N10.19897 (7)1.0170 (2)0.42115 (13)0.0277 (3)
C60.25599 (9)1.0720 (3)0.43984 (17)0.0326 (4)
H60.27521.06570.51910.039*
C20.17410 (7)1.0274 (2)0.30494 (14)0.0232 (3)
C40.25768 (9)1.1411 (3)0.22901 (18)0.0332 (4)
H40.27781.18360.16340.040*
C50.28729 (9)1.1378 (3)0.3457 (2)0.0353 (4)
H50.32661.17810.36010.042*
Li10.13426 (15)0.9162 (5)0.5437 (3)0.0323 (7)
O30.11355 (9)0.6795 (2)0.56747 (16)0.0469 (4)
C70.10916 (8)0.9673 (2)0.28238 (14)0.0239 (3)
O210.00000.6868 (4)0.25000.0527 (6)
Li20.00573 (17)0.8841 (8)0.3807 (4)0.0590 (13)
Cl10.10829 (3)0.57231 (8)0.84542 (5)0.04391 (17)
H2110.0286 (13)0.622 (4)0.230 (3)0.064 (10)*
H320.1130 (18)0.599 (5)0.515 (4)0.086 (12)*
H310.1170 (14)0.627 (4)0.634 (3)0.065 (9)*
O220.00669 (8)0.8066 (3)0.54795 (18)0.0618 (6)
H2210.0386 (10)0.754 (4)0.570 (3)0.075 (10)*
H2220.0166 (14)0.717 (4)0.555 (3)0.120 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (6)0.0478 (8)0.0185 (6)0.0032 (6)0.0031 (5)0.0039 (5)
O20.0313 (6)0.0472 (8)0.0164 (5)0.0051 (6)0.0040 (4)0.0036 (5)
N30.0316 (7)0.0335 (8)0.0181 (6)0.0022 (6)0.0028 (5)0.0009 (6)
N10.0312 (7)0.0352 (8)0.0165 (6)0.0006 (6)0.0012 (5)0.0012 (6)
C60.0330 (8)0.0390 (10)0.0245 (8)0.0006 (8)0.0062 (6)0.0016 (7)
C20.0291 (8)0.0258 (8)0.0148 (6)0.0024 (6)0.0012 (5)0.0000 (6)
C40.0354 (9)0.0361 (10)0.0289 (9)0.0051 (8)0.0075 (7)0.0008 (7)
C50.0289 (9)0.0392 (10)0.0373 (10)0.0036 (8)0.0006 (7)0.0014 (8)
Li10.0376 (16)0.0420 (18)0.0173 (13)0.0004 (14)0.0020 (11)0.0006 (12)
O30.0754 (12)0.0358 (8)0.0277 (7)0.0017 (8)0.0090 (7)0.0005 (7)
C70.0258 (7)0.0285 (8)0.0171 (7)0.0017 (6)0.0006 (5)0.0009 (6)
O210.0337 (11)0.0675 (17)0.0551 (15)0.0000.0086 (10)0.000
Li20.0301 (17)0.116 (4)0.0305 (18)0.009 (2)0.0030 (14)0.018 (2)
Cl10.0420 (3)0.0553 (3)0.0345 (3)0.0001 (2)0.00346 (19)0.0087 (2)
O220.0349 (8)0.0967 (16)0.0550 (11)0.0101 (10)0.0123 (7)0.0338 (11)
Geometric parameters (Å, º) top
O1—C71.247 (2)Li1—N3iii2.221 (4)
Li1—O12.069 (3)Li1—Li2iv3.414 (6)
O2—C71.2528 (19)O3—H320.86 (4)
O2—Li2i1.968 (4)O3—H310.83 (4)
O2—Li1ii2.029 (4)Li2—O212.140 (6)
N3—C21.333 (2)O21—Li2i2.140 (6)
N3—C41.335 (2)O21—H2110.84 (3)
N3—Li1ii2.221 (4)Li2—O221.915 (4)
N1—C61.337 (2)Li2—O2i1.968 (4)
N1—C21.338 (2)Li2—O11.993 (4)
Li1—N12.175 (4)Li2—O22iv2.623 (7)
C6—C51.377 (3)Li2—Li2i2.856 (8)
C6—H60.9300Li2—Li2iv3.183 (11)
C2—C71.517 (2)Li2—Li1iv3.414 (6)
C4—C51.379 (3)Li2—H2222.343 (18)
C4—H40.9300O22—Li2iv2.623 (7)
C5—H50.9300O22—H2210.868 (18)
Li1—O31.987 (4)O22—H2220.891 (18)
Li1—O2iii2.029 (4)
C7—O1—Li2125.36 (16)Li2—O21—Li2i83.7 (3)
C7—O1—Li1117.79 (15)Li2—O21—H211124 (2)
Li2—O1—Li1116.70 (16)Li2i—O21—H211112 (2)
C7—O2—Li2i124.07 (17)O22—Li2—O2i108.02 (19)
C7—O2—Li1ii117.82 (15)O22—Li2—O198.98 (19)
Li2i—O2—Li1ii117.32 (18)O2i—Li2—O1145.3 (3)
C2—N3—C4116.42 (15)O22—Li2—O21112.7 (3)
C2—N3—Li1ii108.69 (14)O2i—Li2—O2198.6 (2)
C4—N3—Li1ii134.65 (15)O1—Li2—O2190.32 (18)
C6—N1—C2116.14 (15)O22—Li2—O22iv92.4 (2)
C6—N1—Li1133.22 (14)O2i—Li2—O22iv81.1 (2)
C2—N1—Li1110.62 (14)O1—Li2—O22iv76.29 (19)
N1—C6—C5122.22 (17)O21—Li2—O22iv153.3 (2)
N1—C6—H6118.9O22—Li2—Li2i160.4 (2)
C5—C6—H6118.9O2i—Li2—Li2i81.81 (19)
N3—C2—N1126.11 (16)O1—Li2—Li2i79.56 (18)
N3—C2—C7117.06 (14)O21—Li2—Li2i48.13 (14)
N1—C2—C7116.82 (15)O22iv—Li2—Li2i106.04 (10)
N3—C4—C5122.10 (17)O22—Li2—Li2iv55.42 (15)
N3—C4—H4119.0O2i—Li2—Li2iv93.4 (2)
C5—C4—H4119.0O1—Li2—Li2iv84.2 (2)
C6—C5—C4116.98 (18)O21—Li2—Li2iv165.6 (3)
C6—C5—H5121.5O22iv—Li2—Li2iv36.95 (15)
C4—C5—H5121.5Li2i—Li2—Li2iv142.6 (2)
O3—Li1—O2iii103.68 (16)O22—Li2—Li1iv82.13 (16)
O3—Li1—O191.92 (15)O2i—Li2—Li1iv31.87 (10)
O2iii—Li1—O1107.96 (16)O1—Li2—Li1iv139.6 (3)
O3—Li1—N1127.32 (18)O21—Li2—Li1iv126.81 (17)
O2iii—Li1—N1128.74 (19)O22iv—Li2—Li1iv63.32 (13)
O1—Li1—N178.11 (12)Li2i—Li2—Li1iv111.75 (17)
O3—Li1—N3iii92.14 (15)Li2iv—Li2—Li1iv63.10 (15)
O2iii—Li1—N3iii78.36 (12)O22—Li2—H22221.2 (6)
O1—Li1—N3iii171.42 (18)O2i—Li2—H222124.0 (7)
N1—Li1—N3iii93.42 (14)O1—Li2—H22288.1 (8)
O3—Li1—Li2iv102.75 (17)O21—Li2—H22294.7 (9)
O2iii—Li1—Li2iv30.81 (10)O22iv—Li2—H222107.6 (10)
O1—Li1—Li2iv77.24 (13)Li2i—Li2—H222140.1 (7)
N1—Li1—Li2iv124.23 (17)Li2iv—Li2—H22271.8 (9)
N3iii—Li1—Li2iv109.16 (14)Li1iv—Li2—H222102.2 (6)
Li1—O3—H32129 (3)Li2—O22—Li2iv87.6 (2)
Li1—O3—H31126 (2)Li2—O22—H221119 (2)
H32—O3—H31101 (3)Li2iv—O22—H221117 (2)
O1—C7—O2127.12 (16)Li2—O22—H222107.6 (17)
O1—C7—C2116.22 (14)Li2iv—O22—H222135 (3)
O2—C7—C2116.65 (15)H221—O22—H22293 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+2, z1/2; (iii) x, y+2, z+1/2; (iv) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H222···O30.89 (2)2.16 (3)2.841 (3)133 (3)
O22—H221···Cl1v0.87 (2)2.36 (2)3.212 (2)167 (3)
O3—H31···Cl10.83 (4)2.35 (4)3.1381 (19)158 (3)
O3—H32···Cl1vi0.86 (4)2.29 (4)3.1429 (19)168 (4)
O21—H211···Cl1vii0.84 (3)2.45 (3)3.288 (2)175 (3)
Symmetry codes: (v) x, y, z+3/2; (vi) x, y+1, z1/2; (vii) x, y+1, z+1.
Selected bond lengths (Å) top
Li1—O12.069 (3)Li2—O212.140 (6)
Li1—N12.175 (4)Li2—O221.915 (4)
Li1—O31.987 (4)Li2—O2ii1.968 (4)
Li1—O2i2.029 (4)Li2—O11.993 (4)
Li1—N3i2.221 (4)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H222···O30.891 (18)2.16 (3)2.841 (3)133 (3)
O22—H221···Cl1iii0.868 (18)2.36 (2)3.212 (2)167 (3)
O3—H31···Cl10.83 (4)2.35 (4)3.1381 (19)158 (3)
O3—H32···Cl1iv0.86 (4)2.29 (4)3.1429 (19)168 (4)
O21—H211···Cl1v0.84 (3)2.45 (3)3.288 (2)175 (3)
Symmetry codes: (iii) x, y, z+3/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1.
Acknowledgements top

No acknowledgments

references
References top

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.

Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.

Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd., Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818.

Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1065–m1066.