supplementary materials


rk2355 scheme

Acta Cryst. (2012). E68, m1421    [ doi:10.1107/S1600536812043942 ]

Poly[[hexaaqua([mu]3-2,2'-bipyridine-4,4',6,6'-tetracarboxylato-[kappa]6O4:N,O6,O6',N':O4')dinickel(II)] dihydrate]

J. Li, K.-W. Lei and D.-G. Xia

Abstract top

In the title complex, {[Ni2(C14H4N2O8)(H2O)6]·2H2O}n, the two NiII atoms are located in different special positions (one on a twofold rotation axis and the second on a centre of symmetry) and have different distorted octahedral environments (one by two N atoms from a bipyridine unit, two O atoms from two water molecules and two O atoms from two carboxylate groups, and the second by four O atoms from four water molecules and two O atoms from two carboxylate groups). Thus, the environments of the NiII atoms may be denoted as NiN2O4 and NiO6. In the crystal, there exists an extensive network of classical O-H...O hydrogen bonds.

Comment top

The complex structure is shown in Fig. 1. In the title complex two Ni atoms are placed in two different special positions: Ni1 - on 2–fold axis and Ni2 - in centre of symmetry. These atoms have different environment: Ni1 is coordinated by two N atoms of dipyridine moiety, two O atoms from water molecules and two O atoms from two carboxylate moieties; Ni2 is coordinated only by six O atoms: four O from four water molecules and two O from two carboxylate moieties.

In the crystal structure there is the wide net of classical O—H···O type H–bonds (Table 1, Fig. 2), which stabilize crystal packing.

Related literature top

For the synthesis of title compound, see: Al-Harbi (2011).

Experimental top

A mixture of 6–(4,6–dicarboxypyridin–2–yl)pyridine–2,4–dicarboxylic acid (0.0332 g, 0.1 mmol), Ni(NO3)2.6H2O (0.0724 g, 0.3 mmol) and water (10 ml) was placed in a teflon–lined stainless steel vessel (25 ml) and heated at 443.15 K for 72 h, and then cooled to room temperature at a rate of 5/h (Al-Harbi, 2011). The resulting green single crystals were isolated by washing with DMF and dried in vacuo. Yield: 62.3%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86Å; O—H = 0.82Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with the atom–numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The three–dimensional structure of the title complex. The hydrogen bonds are indicated by dashed lines.
Poly[[hexaaqua(µ3-2,2'-bipyridine-4,4',6,6'-tetracarboxylato- κ6O4:N,O6,O6',N':O4') dinickel(II)] dihydrate] top
Crystal data top
[Ni2(C14H4N2O8)(H2O)6]·2H2OF(000) = 604
Mr = 589.70Dx = 1.897 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 8794 reflections
a = 7.3588 (8) Åθ = 1.7–27.5°
b = 11.8463 (13) ŵ = 1.91 mm1
c = 11.9942 (13) ÅT = 296 K
β = 99.184 (1)°Block, green
V = 1032.19 (19) Å30.28 × 0.24 × 0.19 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2365 independent reflections
Radiation source: fine–focus sealed tube2248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scansh = 98
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1514
Tmin = 0.591, Tmax = 0.695l = 1515
8794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.5729P]
where P = (Fo2 + 2Fc2)/3
2365 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni2(C14H4N2O8)(H2O)6]·2H2OV = 1032.19 (19) Å3
Mr = 589.70Z = 2
Monoclinic, P2/nMo Kα radiation
a = 7.3588 (8) ŵ = 1.91 mm1
b = 11.8463 (13) ÅT = 296 K
c = 11.9942 (13) Å0.28 × 0.24 × 0.19 mm
β = 99.184 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2365 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2248 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.695Rint = 0.038
8794 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.42 e Å3
2365 reflectionsAbsolute structure: ?
176 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.36726 (2)0.75000.01154 (8)
Ni20.00001.00001.00000.01064 (8)
O10.10038 (16)0.87338 (9)0.89420 (9)0.0161 (2)
O30.10695 (15)1.06255 (9)0.86383 (9)0.0145 (2)
H3A0.08461.13020.85710.022*
O20.33996 (15)0.76758 (9)0.92552 (9)0.0162 (2)
O40.23852 (15)0.90408 (10)1.03816 (9)0.0162 (2)
H4A0.32180.94361.07090.024*
O80.04444 (15)0.28697 (9)0.82901 (9)0.0152 (2)
C10.1670 (2)0.60269 (12)0.77858 (12)0.0118 (3)
N10.10800 (18)0.49784 (10)0.79747 (10)0.0110 (2)
C60.1837 (2)0.78123 (12)0.89848 (11)0.0112 (3)
C40.1418 (2)0.56825 (12)0.88022 (11)0.0112 (3)
H4C0.24630.55520.91300.013*
C20.0741 (2)0.69601 (13)0.81220 (12)0.0123 (3)
H2A0.11530.76880.80110.015*
C50.0391 (2)0.47890 (12)0.84663 (12)0.0112 (3)
C30.0820 (2)0.67854 (12)0.86283 (11)0.0108 (3)
O70.21194 (15)0.32298 (9)0.90173 (9)0.0157 (2)
O50.07941 (17)0.35897 (11)0.59723 (10)0.0201 (2)
H5A0.12450.31690.55480.030*
C70.0751 (2)0.35285 (12)0.86043 (12)0.0120 (3)
O60.02584 (17)0.96743 (11)0.64958 (10)0.0191 (2)
H6A0.015 (3)0.909 (2)0.6259 (19)0.031 (6)*
H6B0.114 (4)0.976 (2)0.621 (2)0.037 (7)*
H5B0.025 (4)0.352 (2)0.603 (2)0.043 (7)*
H4B0.240 (4)0.842 (2)1.059 (2)0.047 (8)*
H3B0.069 (3)1.031 (2)0.801 (2)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01010 (14)0.00796 (14)0.01721 (14)0.0000.00415 (10)0.000
Ni20.01066 (15)0.00722 (14)0.01465 (14)0.00026 (9)0.00393 (10)0.00035 (9)
O10.0192 (6)0.0099 (5)0.0203 (5)0.0022 (4)0.0067 (4)0.0040 (4)
O30.0182 (6)0.0093 (5)0.0165 (5)0.0002 (4)0.0048 (4)0.0003 (4)
O20.0151 (5)0.0139 (5)0.0209 (5)0.0015 (4)0.0067 (4)0.0015 (4)
O40.0140 (5)0.0103 (5)0.0241 (5)0.0009 (4)0.0025 (4)0.0019 (4)
O80.0136 (5)0.0090 (5)0.0239 (5)0.0007 (4)0.0059 (4)0.0014 (4)
C10.0120 (7)0.0097 (7)0.0135 (6)0.0012 (5)0.0020 (5)0.0007 (5)
N10.0108 (6)0.0092 (6)0.0131 (6)0.0003 (4)0.0025 (5)0.0002 (4)
C60.0130 (7)0.0107 (7)0.0097 (6)0.0016 (5)0.0015 (5)0.0008 (5)
C40.0098 (7)0.0124 (7)0.0114 (6)0.0002 (5)0.0018 (5)0.0010 (5)
C20.0138 (7)0.0092 (7)0.0140 (6)0.0012 (5)0.0023 (5)0.0005 (5)
C50.0106 (7)0.0107 (7)0.0119 (6)0.0004 (5)0.0005 (5)0.0008 (5)
C30.0112 (7)0.0100 (7)0.0109 (6)0.0003 (5)0.0001 (5)0.0010 (5)
O70.0127 (5)0.0124 (5)0.0227 (5)0.0007 (4)0.0049 (4)0.0029 (4)
O50.0117 (6)0.0275 (7)0.0217 (6)0.0010 (5)0.0045 (4)0.0089 (5)
C70.0111 (7)0.0103 (7)0.0139 (6)0.0001 (5)0.0004 (5)0.0012 (5)
O60.0156 (6)0.0219 (6)0.0210 (6)0.0053 (5)0.0061 (5)0.0033 (5)
Geometric parameters (Å, º) top
Ni1—N1i1.9996 (12)O8—C71.2769 (18)
Ni1—N11.9996 (12)C1—N11.3468 (18)
Ni1—O52.0516 (12)C1—C21.393 (2)
Ni1—O5i2.0516 (12)C1—C1i1.493 (3)
Ni1—O82.1327 (11)N1—C51.3317 (19)
Ni1—O8i2.1327 (11)C6—C31.525 (2)
Ni2—O12.0265 (11)C4—C51.397 (2)
Ni2—O1ii2.0265 (11)C4—C31.405 (2)
Ni2—O3ii2.0607 (10)C4—H4C0.9300
Ni2—O32.0607 (10)C2—C31.398 (2)
Ni2—O4ii2.0796 (11)C2—H2A0.9300
Ni2—O42.0796 (11)C5—C71.530 (2)
O1—C61.2570 (18)O7—C71.2427 (19)
O3—H3A0.8200O5—H5A0.8200
O3—H3B0.85 (2)O5—H5B0.78 (3)
O2—C61.2541 (18)O6—H6A0.79 (3)
O4—H4A0.8200O6—H6B0.79 (3)
O4—H4B0.78 (3)
N1i—Ni1—N178.65 (7)H3A—O3—H3B108.0
N1i—Ni1—O593.20 (5)Ni2—O4—H4A109.5
N1—Ni1—O591.05 (5)Ni2—O4—H4B124 (2)
N1i—Ni1—O5i91.05 (5)H4A—O4—H4B114.4
N1—Ni1—O5i93.20 (5)C7—O8—Ni1115.42 (9)
O5—Ni1—O5i174.51 (7)N1—C1—C2119.82 (13)
N1i—Ni1—O8155.70 (5)N1—C1—C1i112.73 (8)
N1—Ni1—O877.21 (5)C2—C1—C1i127.45 (8)
O5—Ni1—O889.96 (5)C5—N1—C1122.43 (12)
O5i—Ni1—O887.60 (5)C5—N1—Ni1119.63 (10)
N1i—Ni1—O8i77.21 (5)C1—N1—Ni1117.94 (10)
N1—Ni1—O8i155.70 (5)O2—C6—O1126.58 (14)
O5—Ni1—O8i87.60 (5)O2—C6—C3118.75 (13)
O5i—Ni1—O8i89.96 (5)O1—C6—C3114.64 (13)
O8—Ni1—O8i127.03 (6)C5—C4—C3117.70 (13)
O1—Ni2—O1ii180.00 (4)C5—C4—H4C121.1
O1—Ni2—O3ii94.76 (4)C3—C4—H4C121.1
O1ii—Ni2—O3ii85.24 (4)C1—C2—C3118.91 (13)
O1—Ni2—O385.24 (4)C1—C2—H2A120.5
O1ii—Ni2—O394.76 (4)C3—C2—H2A120.5
O3ii—Ni2—O3180.000 (1)N1—C5—C4121.05 (13)
O1—Ni2—O4ii93.22 (5)N1—C5—C7112.28 (12)
O1ii—Ni2—O4ii86.78 (5)C4—C5—C7126.67 (13)
O3ii—Ni2—O4ii87.43 (4)C2—C3—C4120.06 (13)
O3—Ni2—O4ii92.57 (4)C2—C3—C6118.55 (13)
O1—Ni2—O486.78 (5)C4—C3—C6121.39 (13)
O1ii—Ni2—O493.22 (5)Ni1—O5—H5A109.5
O3ii—Ni2—O492.57 (4)Ni1—O5—H5B113.3 (19)
O3—Ni2—O487.43 (4)H5A—O5—H5B119.4
O4ii—Ni2—O4180.0O7—C7—O8125.72 (14)
C6—O1—Ni2138.47 (10)O7—C7—C5119.10 (13)
Ni2—O3—H3A109.5O8—C7—C5115.18 (13)
Ni2—O3—H3B115.5 (17)H6A—O6—H6B105 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O60.85 (2)1.95 (2)2.7821 (16)169 (2)
O3—H3A···O8iii0.821.902.7189 (16)174
O4—H4A···O6iv0.821.952.7697 (17)178
O4—H4B···O7v0.78 (3)2.03 (3)2.7997 (16)172 (3)
O5—H5A···O2vi0.821.902.6891 (16)162
O5—H5B···O7vii0.78 (3)1.96 (3)2.7395 (17)172 (3)
O6—H6A···O2vii0.79 (3)2.03 (3)2.8096 (17)170 (2)
Symmetry codes: (iii) x, y+1, z; (iv) x+1/2, y+2, z+1/2; (v) x, y+1, z+2; (vi) x+1/2, y+1, z1/2; (vii) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O60.85 (2)1.95 (2)2.7821 (16)169 (2)
O3—H3A···O8i0.821.902.7189 (16)174.4
O4—H4A···O6ii0.821.952.7697 (17)177.8
O4—H4B···O7iii0.78 (3)2.03 (3)2.7997 (16)172 (3)
O5—H5A···O2iv0.821.902.6891 (16)161.9
O5—H5B···O7v0.78 (3)1.96 (3)2.7395 (17)172 (3)
O6—H6A···O2v0.79 (3)2.03 (3)2.8096 (17)170 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+2, z+1/2; (iii) x, y+1, z+2; (iv) x+1/2, y+1, z1/2; (v) x1/2, y, z+3/2.
Acknowledgements top

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University (No. Xkl09070).

references
References top

Al-Harbi, T. (2011). J. Alloys Compd, 509, 387–390.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.