supplementary materials


ru2043 scheme

Acta Cryst. (2012). E68, o3120    [ doi:10.1107/S160053681204189X ]

1-(2-Ammonioethyl)piperazin-1,4-diium dihydrogenophosphate monohydrogenophosphate

M. L. Mrad, V. Ferretti, M. Rzaigui and C. Ben Nasr

Abstract top

The structure of the title compound, C6H18N3·HPO4·H2PO4, is characterized by two kinds of inorganic chains running along the a-axis direction. The first one is composed of HPO42- anions, while the second one is built up by H2PO4- anions. Both types of chains are held together by O-H...O hydrogen bonds. The organic cations are attached to these chains through N-H...O and C-H...O hydrogen bonds. The piperazin-1,4-diium ring adopts a chair conformation.

Comment top

During the systematic investigation of interaction between monophosphoric acid with organic molecules, numerous structures of monophosphates with organic cations have been described. Hydrogen bonds take part to the stability and the cohesion of the corresponding compounds. We report in this work the chemical preparation and the structural investigation of a new hydrogenomonophosphate C6H18N3HO4PH2O4P. The main feature of the atomic arrangement is the existence of two kinds of infinite chains, located at y = 1/4 and y = 3/4, and crossing the unit cell parallel to the a-direction. The first one is composed of HPO42- groups. The second one is formed by H2PO4- anions and characterized by the association between the neighboring chains via strong O—H···O hydrogen bonds with an R22(8) graph set motif (Bernstein et al., 1995) centered at (1/2, 1/2, 0) (Fig. 2). The ammonioethylpiperazinediium cations are anchored onto successive chains through N—H···O and C—H···O hydrogen bonds (Fig. 3). The piperazinediium ring adopts a chair conformation and all the measured main features are similar to intramolecular bond distances and angles usually reported for such ring in hydrogenmonophosphate of organic cations (Jensen et al., 2007). With regards to the geometrical features of the monophosphate anions, we remark the existence of two types of P—O distances. The shorter ones, varying between 1.488 (1) and 1.522 (1) Å, correspond to the oxygen atoms double bonded to the phosphorous atom, while the largest ones, varying between 1.556 (2) and 1.586 (1) Å, are associated with the P—OH single bond. This is in agreement with the literature data for monohydrogenophosphate anion in similar arrangements (e.g. Chtioui & Jouini, 2006; Kaabi et al., 2004).

Related literature top

For graph-set motifs, see: Bernstein et al. (1995). For reference structural data, see: Kaabi et al. (2004); Chtioui & Jouini (2006); Jensen et al. (2007).

Experimental top

Crystals of the title compound were prepared at room temperature by slow addition of a solution of orthophosphoric acid (4 mmol in 30 ml of water) to an alcoholic solution of N-aminoethylpiperazine (2 mmol in 30 ml of ethanol). The acid was added until the alcoholic solution becomes turbid. After filtration, the solution was allowed to slowly evaporate at room temperature over several days leading to formation of transparent prismatic crystals with suitable dimensions for single-crystal structural analysis (yield 50%). The crystals are stable for months under normal conditions of temperature and humidity.

Refinement top

The structure was refined using full-matrix least squares with anisotropic non-H atoms. All hydrogen atoms were located in the Difference Fourier map and refined isotropically.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2] Fig. 2. Projection along the c-axis of the inorganic chains in the structure of the title compound. PO4 is given in the tetrahedral representation. Hydrogen bonds are shown as broken lines.
[Figure 3] Fig. 3. The packing diagram of the compound viewed down the b-axis. PO4 is given in the tetrahedral representation. Hydrogen bonds are shown as broken lines.
1-(2-Ammonioethyl)piperazin-1,4-diium dihydrogenophosphate monohydrogenophosphate top
Crystal data top
C6H18N3·HPO4·H2PO4F(000) = 688
Mr = 325.20Dx = 1.601 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9417 (2) ÅCell parameters from 6163 reflections
b = 11.1054 (2) Åθ = 2.0–29.0°
c = 9.3981 (4) ŵ = 0.36 mm1
β = 92.566 (1)°T = 295 K
V = 1349.37 (7) Å3Plate, pale yellow
Z = 40.52 × 0.49 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
3167 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 29.0°, θmin = 5.1°
φ scans and ω scansh = 1717
6163 measured reflectionsk = 1512
3518 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.101All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.9354P]
where P = (Fo2 + 2Fc2)/3
3518 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C6H18N3·HPO4·H2PO4V = 1349.37 (7) Å3
Mr = 325.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9417 (2) ŵ = 0.36 mm1
b = 11.1054 (2) ÅT = 295 K
c = 9.3981 (4) Å0.52 × 0.49 × 0.20 mm
β = 92.566 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3167 reflections with I > 2σ(I)
6163 measured reflectionsRint = 0.016
3518 independent reflectionsθmax = 29.0°
Refinement top
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.101Δρmax = 0.87 e Å3
S = 1.07Δρmin = 0.69 e Å3
3518 reflectionsAbsolute structure: ?
256 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.94393 (3)0.26513 (3)0.03610 (4)0.01932 (11)
P20.54421 (3)0.17696 (4)0.42663 (4)0.02605 (12)
N10.74513 (10)0.02204 (12)0.00827 (14)0.0225 (3)
N20.75588 (12)0.04193 (13)0.31310 (15)0.0284 (3)
N30.87175 (12)0.00772 (13)0.27737 (16)0.0275 (3)
O10.84923 (10)0.33714 (11)0.01467 (13)0.0314 (3)
O20.99197 (11)0.31318 (11)0.17482 (12)0.0322 (3)
O30.91834 (10)0.13172 (10)0.04589 (13)0.0298 (3)
O41.02998 (10)0.28122 (12)0.07732 (14)0.0319 (3)
O50.58176 (14)0.24304 (15)0.29656 (16)0.0517 (4)
O60.61467 (9)0.07876 (11)0.47656 (13)0.0304 (3)
O70.52603 (19)0.27294 (18)0.54576 (19)0.0687 (7)
O80.43568 (12)0.12345 (16)0.3960 (2)0.0548 (5)
C10.78068 (14)0.08225 (14)0.09447 (19)0.0280 (3)
C20.82930 (14)0.03456 (16)0.22692 (19)0.0306 (3)
C30.71060 (14)0.13880 (16)0.22738 (19)0.0313 (3)
C40.66558 (14)0.09023 (18)0.09418 (19)0.0323 (4)
C50.70292 (13)0.01058 (16)0.13353 (18)0.0287 (3)
C60.77789 (14)0.07807 (16)0.23154 (19)0.0305 (3)
H1A0.833 (2)0.124 (2)0.042 (3)0.047 (7)*
H2NA0.7042 (19)0.002 (2)0.356 (3)0.040 (6)*
H4O1.011 (3)0.250 (3)0.152 (4)0.068 (9)*
H1B0.7218 (18)0.130 (2)0.118 (2)0.035 (6)*
H3NA0.895 (2)0.033 (2)0.207 (3)0.050 (7)*
H3NB0.921 (2)0.062 (2)0.309 (3)0.045 (7)*
H3NC0.8586 (19)0.045 (2)0.351 (3)0.043 (6)*
H2NB0.790 (2)0.080 (2)0.386 (3)0.052 (7)*
H2A0.8872 (18)0.015 (2)0.204 (2)0.036 (6)*
H2B0.8482 (19)0.099 (2)0.288 (3)0.048 (7)*
H3A0.7650 (19)0.195 (2)0.203 (3)0.041 (6)*
H3B0.6571 (18)0.177 (2)0.284 (3)0.037 (6)*
H4A0.6092 (19)0.037 (2)0.114 (3)0.040 (6)*
H5A0.6835 (18)0.066 (2)0.181 (3)0.039 (6)*
H6A0.7415 (19)0.098 (2)0.314 (3)0.043 (6)*
H6B0.803 (2)0.153 (2)0.184 (3)0.048 (7)*
H5B0.6421 (16)0.0630 (19)0.117 (2)0.030 (5)*
H4B0.6433 (19)0.154 (2)0.038 (3)0.045 (7)*
H8O0.425 (3)0.058 (3)0.435 (4)0.082 (11)*
H7O0.539 (3)0.250 (3)0.623 (5)0.089 (12)*
H1N0.8034 (18)0.071 (2)0.006 (2)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02330 (19)0.01977 (18)0.01494 (17)0.00404 (13)0.00127 (13)0.00001 (12)
P20.0326 (2)0.0265 (2)0.0191 (2)0.00124 (15)0.00252 (15)0.00181 (14)
N10.0219 (6)0.0237 (6)0.0220 (6)0.0004 (5)0.0016 (5)0.0002 (5)
N20.0319 (7)0.0325 (7)0.0209 (6)0.0090 (6)0.0004 (5)0.0021 (5)
N30.0332 (7)0.0263 (6)0.0226 (6)0.0012 (5)0.0019 (5)0.0025 (5)
O10.0348 (6)0.0338 (6)0.0255 (6)0.0089 (5)0.0004 (5)0.0002 (5)
O20.0455 (7)0.0336 (6)0.0170 (5)0.0129 (5)0.0029 (5)0.0019 (4)
O30.0348 (6)0.0224 (5)0.0316 (6)0.0089 (4)0.0036 (5)0.0040 (4)
O40.0289 (6)0.0444 (7)0.0228 (6)0.0119 (5)0.0065 (5)0.0030 (5)
O50.0701 (10)0.0554 (9)0.0303 (7)0.0276 (8)0.0105 (7)0.0157 (6)
O60.0274 (6)0.0297 (6)0.0339 (6)0.0049 (5)0.0014 (5)0.0016 (5)
O70.1099 (16)0.0634 (11)0.0350 (8)0.0542 (11)0.0256 (9)0.0179 (8)
O80.0350 (7)0.0520 (9)0.0790 (12)0.0093 (7)0.0197 (7)0.0335 (9)
C10.0311 (8)0.0220 (7)0.0310 (8)0.0022 (6)0.0035 (6)0.0020 (6)
C20.0292 (8)0.0323 (8)0.0309 (8)0.0018 (6)0.0067 (6)0.0057 (7)
C30.0359 (9)0.0280 (8)0.0293 (8)0.0033 (7)0.0058 (7)0.0012 (6)
C40.0275 (8)0.0388 (9)0.0306 (8)0.0105 (7)0.0010 (6)0.0004 (7)
C50.0277 (7)0.0330 (8)0.0259 (8)0.0015 (6)0.0066 (6)0.0005 (6)
C60.0372 (9)0.0290 (8)0.0255 (8)0.0050 (7)0.0027 (6)0.0048 (6)
Geometric parameters (Å, º) top
P1—O21.5160 (12)N3—H3NC0.93 (3)
P1—O31.5218 (11)O4—H4O0.81 (3)
P1—O11.5222 (12)O7—H7O0.80 (4)
P1—O41.5858 (12)O8—H8O0.82 (4)
P2—O51.4886 (14)C1—C21.515 (2)
P2—O61.5097 (12)C1—H1A0.94 (3)
P2—O81.5635 (16)C1—H1B0.95 (2)
P2—O71.5561 (17)C2—H2A0.95 (2)
N1—C41.487 (2)C2—H2B0.96 (3)
N1—C11.498 (2)C3—C41.504 (3)
N1—C51.507 (2)C3—H3A0.96 (3)
N1—H1N0.93 (2)C3—H3B0.95 (2)
N2—C31.481 (2)C4—H4A0.96 (2)
N2—C21.487 (2)C4—H4B0.94 (3)
N2—H2NA0.91 (3)C5—C61.507 (2)
N2—H2NB0.93 (3)C5—H5A0.99 (2)
N3—C61.492 (2)C5—H5B0.99 (2)
N3—H3NA0.87 (3)C6—H6A0.95 (3)
N3—H3NB0.92 (3)C6—H6B1.01 (3)
O2—P1—O3111.88 (7)C2—C1—H1A107.2 (16)
O2—P1—O1112.21 (7)N1—C1—H1B107.5 (14)
O3—P1—O1110.86 (7)C2—C1—H1B111.2 (14)
O2—P1—O4105.37 (7)H1A—C1—H1B113 (2)
O3—P1—O4108.16 (7)N2—C2—C1111.62 (14)
O1—P1—O4108.06 (7)N2—C2—H2A105.7 (14)
O5—P2—O6115.58 (10)C1—C2—H2A111.8 (14)
O5—P2—O8107.41 (9)N2—C2—H2B105.8 (15)
O6—P2—O8110.04 (8)C1—C2—H2B111.1 (16)
O5—P2—O7106.64 (12)H2A—C2—H2B111 (2)
O6—P2—O7110.19 (8)N2—C3—C4111.70 (14)
O8—P2—O7106.54 (13)N2—C3—H3A107.2 (15)
C4—N1—C1108.79 (13)C4—C3—H3A110.2 (15)
C4—N1—C5109.46 (13)N2—C3—H3B108.0 (14)
C1—N1—C5115.14 (12)C4—C3—H3B109.1 (15)
C4—N1—H1N108.7 (14)H3A—C3—H3B111 (2)
C1—N1—H1N105.1 (14)N1—C4—C3110.49 (14)
C5—N1—H1N109.5 (15)N1—C4—H4A107.1 (14)
C3—N2—C2112.18 (13)C3—C4—H4A112.3 (15)
C3—N2—H2NA109.3 (15)N1—C4—H4B107.4 (16)
C2—N2—H2NA111.8 (15)C3—C4—H4B109.9 (16)
C3—N2—H2NB106.3 (17)H4A—C4—H4B109 (2)
C2—N2—H2NB110.2 (16)N1—C5—C6114.28 (14)
H2NA—N2—H2NB107 (2)N1—C5—H5A107.5 (14)
C6—N3—H3NA111.2 (17)C6—C5—H5A108.6 (14)
C6—N3—H3NB107.3 (16)N1—C5—H5B108.5 (13)
H3NA—N3—H3NB109 (2)C6—C5—H5B107.0 (12)
C6—N3—H3NC111.9 (15)H5A—C5—H5B111.0 (19)
H3NA—N3—H3NC109 (2)N3—C6—C5114.18 (14)
H3NB—N3—H3NC109 (2)N3—C6—H6A108.0 (15)
P1—O4—H4O110 (2)C5—C6—H6A106.6 (15)
P2—O7—H7O114 (3)N3—C6—H6B106.4 (15)
P2—O8—H8O113 (3)C5—C6—H6B110.8 (15)
N1—C1—C2108.85 (13)H6A—C6—H6B111 (2)
N1—C1—H1A109.1 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.93 (2)1.66 (2)2.582 (2)168 (2)
N2—H2na···O60.91 (2)1.80 (2)2.692 (2)167 (2)
N3—H3na···O30.87 (3)1.90 (3)2.759 (2)168 (3)
O4—H4o···O2i0.81 (4)1.78 (4)2.582 (2)170 (3)
N2—H2NB···O1i0.93 (3)1.72 (3)2.656 (2)175 (3)
N3—H3NB···O2ii0.92 (3)1.79 (3)2.683 (2)164 (2)
N3—H3NC···O1iii0.93 (3)1.83 (3)2.747 (2)171 (2)
O8—H8O···O6iv0.82 (4)1.80 (4)2.614 (2)173 (4)
O7—H7O···O5v0.80 (4)1.74 (4)2.502 (2)159 (4)
C3—H3A···O10.96 (2)2.58 (2)3.427 (2)147 (2)
C5—H5B···O5vi0.99 (2)2.44 (2)3.236 (2)137 (2)
C2—H2B···O4vii0.96 (3)2.45 (3)3.345 (2)154 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z1; (v) x, y1/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x+2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.93 (2)1.66 (2)2.582 (2)168 (2)
N2—H2na···O60.91 (2)1.80 (2)2.692 (2)167 (2)
N3—H3na···O30.87 (3)1.90 (3)2.759 (2)168 (3)
O4—H4o···O2i0.81 (4)1.78 (4)2.582 (2)170 (3)
N2—H2NB···O1i0.93 (3)1.72 (3)2.656 (2)175 (3)
N3—H3NB···O2ii0.92 (3)1.79 (3)2.683 (2)164 (2)
N3—H3NC···O1iii0.93 (3)1.83 (3)2.747 (2)171 (2)
O8—H8O···O6iv0.82 (4)1.80 (4)2.614 (2)173 (4)
O7—H7O···O5v0.80 (4)1.74 (4)2.502 (2)159 (4)
C3—H3A···O10.96 (2)2.58 (2)3.427 (2)147 (2)
C5—H5B···O5vi0.99 (2)2.44 (2)3.236 (2)137 (2)
C2—H2B···O4vii0.96 (3)2.45 (3)3.345 (2)154 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z1; (v) x, y1/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x+2, y1/2, z1/2.
Acknowledgements top

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bernstein, J., Davids, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895,Oak Ridge National Laboratory,Oak Ridge, Tennessee, USA.

Chtioui, A. & Jouini, A. (2006). Mater. Res. Bull. 41, 569–575.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Jensen, T. R., Jorgensen, J.-E., Hazell, R. G., Jakobsen, H. J., Chevallier, M.-A., Jorgensen, L. & Wiedermann, A. (2007). Solid State Sci. 9, 72–81.

Kaabi, K., Ben Nasr, C. & Lefebvre, F. (2004). Mater. Res. Bull. 39, 205–215.

Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.