organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-Benzyl­­idene-3-methyl­isoxazol-5(4H)-one

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, cDepartment of Physics, St Philomena's College, Mysore, India, and dSER-CAT, APS, Argonne National Laboratory, Argonne, IL-60439, USA
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

(Received 30 September 2012; accepted 2 October 2012; online 10 October 2012)

In the title compound C11H9NO2, the phenyl and isoxazole rings are almost coplanar, making a dihedral angle of 1.14 (9)°. This planarity is also assisted by an intra­molecular C—H⋯O hydrogen bond between the phenyl ring and the carbonyl O atom. In the crystal, weak C—H⋯O inter­actions generate a layered structure parallel to the ac plane.

Related literature

For the biological and therapeutic importance of isoxazoles, see: Kang et al. (2000[Kang, Y. Y., Shin, K. L., Yoo, K. H., Seo, K. J., Hong, C. Y., Lee, C. S., Park, S. Y., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 95-99.]); Conti et al. (1998[Conti, P., Dallanoce, C., Amici, M. D., Micheli, C. D. & Klotz, K. N. (1998). Bioorg. Med. Chem. 6, 401-408.]); Changtam et al. (2010[Changtam, C., Hongmanee, P. & Suksamrarn, A. (2010). Eur. J. Med. Chem. 45, 4446-4457.]); Kwon et al., (1995[Kwon, T., Heimann, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048-1051.]); Abbiati et al. (2003[Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887-9893.]). For bond-length and angle data in a related structure, see: Wolf et al. (1995[Wolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789-6790.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO2

  • Mr = 187.19

  • Monoclinic, P 21 /n

  • a = 12.144 (4) Å

  • b = 6.734 (2) Å

  • c = 12.333 (4) Å

  • β = 114.589 (5)°

  • V = 917.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 6722 measured reflections

  • 1610 independent reflections

  • 1352 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.07

  • 1610 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1 0.93 2.21 3.042 (2) 149
C7—H7C⋯O6i 0.96 2.61 3.297 (2) 129
C8—H8⋯O1i 0.93 2.72 3.574 (2) 154
C14—H14⋯O1i 0.93 2.68 3.526 (2) 151
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isoxazole and its derivatives represent one of the important classes of heterocyclic compounds. These derivatives are employed in the area of pharmaceuticals and demonstrate therapeutic properties such as anti-tumor (Kang et al., 2000), hypoglycemic (Conti et al., 1998), anti-mycobacterial (Changtam et al., 2010) and anti-inflammatory activity (Kwon et al., 1995). In addition, isoxazole derivatives serve as versatile building blocks in organic synthesis (Abbiati et al., 2003). With this extensive background of isoxazole derivatives, we have synthesized the title compound to study its crystal structure.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the phenyl ring (C9/C10/C11/C12/C13/C14) and isoxazole ring (C1/C3/C4/N5/O6) is 1.14 (9)°. The isoxazole moiety is in a syn-periplanar conformation with respect to the phenyl ring, as indicated by the torsion angle value of 0.5 (2)°. The bond lengths and angles agree with those reported for a related structure (Wolf et al., 1995). There are no classic hydrogen bonds. In the crystal structure weak C—H···O hydrogen bonds link molecules into sheets Table 1. The packing diagram viewed down the b axis shows a layered stacking feature (Fig. 2).

Related literature top

For the biological and therapeutic importance of isoxazoles, see: Kang et al. (2000); Conti et al. (1998); Changtam et al. (2010); Kwon et al., (1995); Abbiati et al. (2003). For bond-length and angle data in a related structure, see: Wolf et al. (1995).

Experimental top

A mixture of benzaldehyde oxime (1 mmol), ethyl acetoacetate (2 mmol) and anhydrous zinc chloride (0.1 mmol) were taken in a 10 ml round bottomed flask and contents were gradually heated to 120°C without any solvent for about one hour. After completion of the reaction (as indicated by TLC), the mixture was cooled to room temperature and methanol was added with stirring for about 30 min; the solids thus obtained were filtered and recrystallized from hot ethanol.

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.96 Å; Uiso(H) = 1.2-1.5Ueq(carrier atom) for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective diagram of the molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down the b axis.
(Z)-4-Benzylidene-3-methylisoxazol-5(4H)-one top
Crystal data top
C11H9NO2F(000) = 392
Mr = 187.19Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1610 reflections
a = 12.144 (4) Åθ = 2.0–25.0°
b = 6.734 (2) ŵ = 0.10 mm1
c = 12.333 (4) ÅT = 293 K
β = 114.589 (5)°Block, yellow
V = 917.1 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
Rint = 0.016
ω and ϕ scansθmax = 25.0°, θmin = 2.0°
6722 measured reflectionsh = 1414
1610 independent reflectionsk = 77
1352 reflections with I > 2σ(I)l = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.1944P]
where P = (Fo2 + 2Fc2)/3
1610 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C11H9NO2V = 917.1 (5) Å3
Mr = 187.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.144 (4) ŵ = 0.10 mm1
b = 6.734 (2) ÅT = 293 K
c = 12.333 (4) Å0.30 × 0.25 × 0.20 mm
β = 114.589 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1352 reflections with I > 2σ(I)
6722 measured reflectionsRint = 0.016
1610 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
1610 reflectionsΔρmin = 0.14 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33893 (13)0.04132 (18)0.47425 (13)0.0680 (5)
O60.23528 (13)0.11975 (18)0.58010 (12)0.0703 (5)
N50.18345 (15)0.2949 (2)0.60829 (15)0.0632 (6)
C20.29158 (16)0.1691 (2)0.50821 (15)0.0505 (6)
C30.27739 (13)0.3852 (2)0.48985 (13)0.0387 (5)
C40.20890 (14)0.4425 (2)0.55692 (14)0.0450 (5)
C70.16786 (17)0.6440 (3)0.57095 (17)0.0594 (7)
C80.31588 (13)0.5159 (2)0.42957 (13)0.0392 (5)
C90.38358 (13)0.4957 (2)0.35687 (13)0.0391 (5)
C100.42882 (16)0.3176 (2)0.33333 (15)0.0514 (6)
C110.49210 (17)0.3185 (3)0.26289 (17)0.0593 (7)
C120.51257 (17)0.4919 (3)0.21543 (16)0.0556 (6)
C130.47001 (15)0.6689 (3)0.23875 (15)0.0522 (6)
C140.40617 (14)0.6711 (2)0.30883 (14)0.0452 (5)
H7A0.133300.640200.628200.0890*
H7B0.108000.689100.495600.0890*
H7C0.235600.733200.598100.0890*
H80.294400.646400.436100.0470*
H100.416200.199000.365100.0620*
H110.521500.199400.247200.0710*
H120.555000.489600.167700.0670*
H130.484200.786700.207400.0630*
H140.377700.791200.324300.0540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0942 (10)0.0354 (7)0.0893 (10)0.0065 (6)0.0529 (8)0.0014 (6)
O60.1040 (11)0.0394 (7)0.0916 (10)0.0073 (7)0.0646 (9)0.0076 (6)
N50.0818 (11)0.0514 (9)0.0777 (11)0.0065 (8)0.0544 (9)0.0020 (8)
C20.0602 (10)0.0383 (9)0.0576 (10)0.0049 (8)0.0291 (9)0.0003 (7)
C30.0401 (8)0.0349 (8)0.0435 (8)0.0026 (6)0.0197 (7)0.0019 (6)
C40.0466 (9)0.0452 (9)0.0490 (9)0.0065 (7)0.0258 (8)0.0008 (7)
C70.0701 (12)0.0539 (11)0.0733 (12)0.0062 (9)0.0488 (10)0.0012 (9)
C80.0415 (8)0.0343 (8)0.0443 (8)0.0008 (6)0.0203 (7)0.0021 (6)
C90.0387 (8)0.0401 (8)0.0400 (8)0.0011 (6)0.0178 (7)0.0026 (6)
C100.0615 (11)0.0394 (9)0.0615 (10)0.0027 (8)0.0339 (9)0.0073 (7)
C110.0681 (12)0.0532 (11)0.0706 (12)0.0000 (9)0.0427 (10)0.0172 (9)
C120.0555 (10)0.0707 (12)0.0503 (10)0.0019 (9)0.0317 (8)0.0070 (8)
C130.0547 (10)0.0566 (11)0.0531 (10)0.0014 (8)0.0303 (8)0.0088 (8)
C140.0480 (9)0.0438 (9)0.0498 (9)0.0057 (7)0.0263 (8)0.0036 (7)
Geometric parameters (Å, º) top
O1—C21.203 (2)C11—C121.374 (3)
O6—N51.446 (2)C12—C131.376 (3)
O6—C21.367 (3)C13—C141.381 (3)
N5—C41.284 (2)C7—H7A0.9600
C2—C31.472 (2)C7—H7B0.9600
C3—C41.448 (2)C7—H7C0.9600
C3—C81.355 (2)C8—H80.9300
C4—C71.480 (3)C10—H100.9300
C8—C91.453 (2)C11—H110.9300
C9—C101.399 (2)C12—H120.9300
C9—C141.399 (2)C13—H130.9300
C10—C111.379 (3)C14—H140.9300
O1···C103.042 (2)C13···C2vi3.364 (3)
O6···C7i3.297 (3)C13···C3vi3.471 (3)
O1···H102.2100C14···C2iii3.582 (3)
O1···H14i2.6800C2···H102.7700
O1···H8i2.7200C3···H102.9900
O6···H7Ci2.6100C7···H82.6900
O6···H12ii2.9100C8···H7C3.0200
N5···H12ii2.7600C11···H7Biv3.0300
C2···C103.380 (3)C11···H7Ciii3.0500
C2···C14iii3.582 (3)H7A···H13vii2.4400
C2···C13iv3.364 (3)H7B···C11vi3.0300
C2···C13iii3.434 (3)H7C···O6v2.6100
C3···C13iii3.493 (3)H7C···C83.0200
C3···C13iv3.471 (3)H7C···H82.4600
C3···C12iii3.562 (3)H7C···C11iii3.0500
C4···C12iii3.408 (3)H8···O1v2.7200
C7···O6v3.297 (3)H8···C72.6900
C8···C10iii3.446 (3)H8···H7C2.4600
C8···C9iii3.502 (3)H8···H142.2400
C9···C9iii3.486 (2)H10···O12.2100
C9···C8iii3.502 (3)H10···C22.7700
C10···C8iii3.446 (3)H10···C32.9900
C10···C23.380 (3)H12···O6viii2.9100
C10···O13.042 (2)H12···N5viii2.7600
C12···C4iii3.408 (3)H13···H7Aix2.4400
C12···C3iii3.562 (3)H14···O1v2.6800
C13···C3iii3.493 (3)H14···H82.2400
C13···C2iii3.434 (3)
N5—O6—C2110.06 (12)C9—C14—C13121.09 (15)
O6—N5—C4107.14 (16)C4—C7—H7A109.00
O1—C2—O6119.51 (14)C4—C7—H7B109.00
O1—C2—C3134.11 (18)C4—C7—H7C109.00
O6—C2—C3106.38 (14)H7A—C7—H7B109.00
C2—C3—C4103.52 (13)H7A—C7—H7C109.00
C2—C3—C8132.98 (16)H7B—C7—H7C109.00
C4—C3—C8123.48 (13)C3—C8—H8113.00
N5—C4—C3112.89 (14)C9—C8—H8113.00
N5—C4—C7119.35 (17)C9—C10—H10120.00
C3—C4—C7127.76 (15)C11—C10—H10120.00
C3—C8—C9133.69 (13)C10—C11—H11119.00
C8—C9—C10125.46 (14)C12—C11—H11119.00
C8—C9—C14116.32 (13)C11—C12—H12120.00
C10—C9—C14118.22 (15)C13—C12—H12120.00
C9—C10—C11119.80 (15)C12—C13—H13120.00
C10—C11—C12121.27 (18)C14—C13—H13120.00
C11—C12—C13119.77 (19)C9—C14—H14119.00
C12—C13—C14119.85 (17)C13—C14—H14119.00
C2—O6—N5—C40.8 (2)C8—C3—C4—C70.9 (3)
N5—O6—C2—O1179.11 (17)C2—C3—C4—N50.07 (19)
N5—O6—C2—C30.72 (19)C3—C8—C9—C101.0 (3)
O6—N5—C4—C30.5 (2)C3—C8—C9—C14179.86 (17)
O6—N5—C4—C7179.50 (15)C8—C9—C10—C11179.85 (17)
O6—C2—C3—C40.41 (18)C14—C9—C10—C111.0 (3)
O1—C2—C3—C4179.4 (2)C8—C9—C14—C13179.80 (15)
O1—C2—C3—C81.8 (4)C10—C9—C14—C130.8 (2)
O6—C2—C3—C8178.46 (17)C9—C10—C11—C120.4 (3)
C2—C3—C4—C7179.93 (17)C10—C11—C12—C130.4 (3)
C8—C3—C4—N5179.08 (16)C11—C12—C13—C140.5 (3)
C2—C3—C8—C91.8 (3)C12—C13—C14—C90.1 (3)
C4—C3—C8—C9179.54 (16)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+3/2, z+1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.213.042 (2)149
C7—H7C···O6v0.962.613.297 (2)129
C8—H8···O1v0.932.723.574 (2)154
C14—H14···O1v0.932.683.526 (2)151
Symmetry code: (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H9NO2
Mr187.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.144 (4), 6.734 (2), 12.333 (4)
β (°) 114.589 (5)
V3)917.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6722, 1610, 1352
Rint0.016
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.07
No. of reflections1610
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.93002.21003.042 (2)149
C7—H7C···O6i0.96002.61203.297 (2)129
C8—H8···O1i0.93002.71603.574 (2)154
C14—H14···O1i0.93002.68403.526 (2)151
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

MM would like to thank the University of Mysore for the award of project DV3/136/2007–2008/24.09.09.

References

First citationAbbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChangtam, C., Hongmanee, P. & Suksamrarn, A. (2010). Eur. J. Med. Chem. 45, 4446–4457.  Web of Science CrossRef CAS PubMed Google Scholar
First citationConti, P., Dallanoce, C., Amici, M. D., Micheli, C. D. & Klotz, K. N. (1998). Bioorg. Med. Chem. 6, 401–408.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKang, Y. Y., Shin, K. L., Yoo, K. H., Seo, K. J., Hong, C. Y., Lee, C. S., Park, S. Y., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 95–99.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKwon, T., Heimann, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048–1051.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789–6790.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds