supplementary materials


su2505 scheme

Acta Cryst. (2012). E68, m1339-m1340    [ doi:10.1107/S1600536812041074 ]

Tetrakis([mu]-acetato-[kappa]2O:O')-bis[(3-pyridinecarboxaldehyde-[kappa]N')]dicopper(II)(Cu-Cu)

A. Cruz-Enriquez, A. Baez-Castro, H. Höpfl, M. Parra-Hake and J. J. Campos-Gaxiola

Abstract top

The binuclear title compound, [Cu2(CH3CO2)4(C6H5NO)], is located about a center of inversion. The CuII atoms are connected [Cu-Cu = 2.6134 (5) Å] and bridged by four acetate ligands. Their distorted octahedral coordination geometry is completed by a terminal pyridine N atom of a 3-pyridincarboxaldehyde ligand. In the crystal, the complex molecules are linked by C-H...O hydrogen bonds, forming two-dimensional networks lying parallel to the ab plane. These networks are linked via C-H...O hydrogen bonds involving inversion-related 3-pyridinecarboxaldehyde ligands, forming a three dimensional supramolecular architecture.

Comment top

Bridged binuclear copper(II) complexes have been the subject of continuing interest because of their magneto-structural properties. Pyridine ligands have the potential to be used in the synthesis of supramolecular materials, particularly transition metal coordination polymers. Herein, we report on the synthesis and crystal structure of the new binuclear Cu2(OAc)4L2 paddle-wheel complex with L = 3-pyridincarboxaldehyde.

The title complex (Fig. 1) is structurally similar to paddle-wheel structures of other Cu2(OAc)4L2 complexes (Aakeröy et al., 2003; Fairuz et al., 2011; Seco et al., 2004; Sieroń, 2004; Trivedi et al., 2011). The binuclear molecule lies about an inversion center. Attached to the Cu2(OAc)4 core unit there are two apical pyridine groups from 3-pyridincarboxaldehyde ligands. The Cu—O distances [which vary from 1.9625 (19) - 1.9692 (17) Å], the Cu1—N1 distance [2.189 (2) Å], and the corresponding bond angles are consistent with the structurally similar CuIIcomplexes mentioned above. Although the Cu1—Cu1i separation of 2.6134 (6) Å [symmetry code: (i) -x+1, -y+1, -z+2] is towards the lower limit, it is within the range of values reported for other CuII paddle-wheel structures (Sieroń, 2004; Asem et al., 2011).

In the crystal, the complex molecules are linked by C—H···O hydrogen bonds to form two-dimensional networks lying parallel to the ab plane (Table 1 and Fig. 2). These networks are linked via C-H···O hydrogen bonds involving inversion related 3-pyridincarboxaldehyde ligands forming a three dimensional supramolecular architecture (Table 1).

Related literature top

For related paddle-wheel structures, see: Aakeröy et al. (2003); Sieroń (2004); Fairuz et al. (2011); Trivedi et al. (2011). For Cu···Cu separations in related compounds, see: Seco et al. (2004); Asem et al. (2011).

Experimental top

A mixture of 3-pyridincarboxaldehyde (0.05 g, 0.466 mmol) and Cu(CH3COO)2H2O (0.093 g, 0.466 mmol) dissolved in methanol (5 ml) was stirred for 2 h at room temperature to give a blue solution. After one week, blue crystals suitable for X-ray diffraction analysis had been formed, which were collected by filtration [Yield: 65%]. Spectroscopic and TGA data are given in the archived CIF.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 and 096 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related by the symmetry code: -x+1, -y+1, -z+2.
[Figure 2] Fig. 2. Perspective view of a fragment of the two-dimensional supramolecular network with the C—H···O hydrogen bonds shown as dashed lines.
Tetrakis(µ-acetato-κ2O:O')-bis[(3-pyridinecarboxaldehyde- κN')]dicopper(II)(Cu—Cu) top
Crystal data top
[Cu2(C2H3O2)4(C6H5NO)]Z = 1
Mr = 577.48F(000) = 294
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4099 (6) ÅCell parameters from 3727 reflections
b = 8.4298 (7) Åθ = 2.5–28.3°
c = 10.0254 (8) ŵ = 1.93 mm1
α = 100.353 (1)°T = 100 K
β = 108.975 (1)°Rectangular prism, blue
γ = 98.679 (1)°0.48 × 0.21 × 0.17 mm
V = 567.61 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1980 independent reflections
Radiation source: fine-focus sealed tube1921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.448, Tmax = 0.720k = 810
4118 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.5378P]
where P = (Fo2 + 2Fc2)/3
1980 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2(C2H3O2)4(C6H5NO)]γ = 98.679 (1)°
Mr = 577.48V = 567.61 (8) Å3
Triclinic, P1Z = 1
a = 7.4099 (6) ÅMo Kα radiation
b = 8.4298 (7) ŵ = 1.93 mm1
c = 10.0254 (8) ÅT = 100 K
α = 100.353 (1)°0.48 × 0.21 × 0.17 mm
β = 108.975 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1980 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1921 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.720Rint = 0.018
4118 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.41 e Å3
S = 1.10Δρmin = 0.36 e Å3
1980 reflectionsAbsolute structure: ?
156 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Spectroscopic and TGA data for the title compound: IR (KBr, cm-1): 3273, 3076, 2935, 2871, 1705, 1615, 1440, 1218, 1035, 690; TGA Calcd. for 2(C6H5NO): 37.07. Found: 37.53% (303 - 473 K).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.56063 (4)0.57222 (3)0.91251 (3)0.0137 (1)
O11.1945 (3)0.9402 (3)0.6523 (2)0.0382 (7)
O20.6188 (3)0.3569 (2)0.85203 (19)0.0232 (5)
O30.5192 (3)0.2340 (2)1.00330 (18)0.0216 (5)
O40.2879 (2)0.4870 (2)0.77698 (18)0.0235 (5)
O50.1855 (2)0.3580 (2)0.92442 (18)0.0243 (5)
N10.6613 (3)0.6761 (2)0.7573 (2)0.0155 (6)
C10.8501 (4)0.7380 (3)0.7858 (2)0.0192 (7)
C20.9167 (4)0.8063 (3)0.6899 (3)0.0203 (7)
C30.7811 (4)0.8086 (3)0.5568 (3)0.0215 (8)
C40.5870 (4)0.7427 (3)0.5258 (3)0.0223 (7)
C50.5325 (4)0.6786 (3)0.6284 (3)0.0198 (7)
C61.1288 (4)0.8746 (4)0.7290 (3)0.0306 (9)
C70.5933 (3)0.2365 (3)0.9070 (2)0.0172 (7)
C80.6587 (4)0.0847 (3)0.8539 (3)0.0230 (8)
C90.1593 (3)0.3988 (3)0.8058 (2)0.0168 (7)
C100.0418 (4)0.3371 (3)0.6896 (3)0.0242 (8)
H10.941300.735200.874200.0230*
H30.821200.853700.490200.0260*
H40.493200.741200.437100.0270*
H50.400400.635200.606900.0240*
H61.215400.866300.817200.0370*
H8A0.589700.043100.751000.0340*
H8B0.631200.001500.902900.0340*
H8C0.796900.112900.873800.0340*
H10A0.063900.220200.650900.0360*
H10B0.051100.393100.613000.0360*
H10C0.138500.358800.730700.0360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0144 (2)0.0153 (2)0.0134 (2)0.0035 (1)0.0066 (1)0.0051 (1)
O10.0245 (10)0.0576 (14)0.0370 (11)0.0009 (9)0.0121 (9)0.0276 (10)
O20.0356 (10)0.0191 (9)0.0269 (9)0.0118 (8)0.0217 (8)0.0106 (7)
O30.0309 (10)0.0186 (9)0.0244 (9)0.0100 (7)0.0174 (8)0.0096 (7)
O40.0165 (9)0.0326 (10)0.0188 (8)0.0007 (8)0.0039 (7)0.0096 (7)
O50.0168 (9)0.0343 (10)0.0200 (9)0.0000 (7)0.0050 (7)0.0103 (8)
N10.0195 (10)0.0129 (10)0.0157 (9)0.0028 (8)0.0083 (8)0.0042 (8)
C10.0222 (13)0.0214 (12)0.0162 (11)0.0070 (10)0.0069 (10)0.0085 (9)
C20.0211 (13)0.0213 (13)0.0226 (12)0.0068 (10)0.0102 (10)0.0096 (10)
C30.0266 (14)0.0243 (13)0.0180 (12)0.0052 (11)0.0125 (11)0.0079 (10)
C40.0231 (13)0.0276 (14)0.0146 (11)0.0042 (11)0.0042 (10)0.0072 (10)
C50.0194 (12)0.0199 (12)0.0190 (12)0.0018 (10)0.0072 (10)0.0042 (10)
C60.0220 (14)0.0439 (17)0.0291 (14)0.0053 (12)0.0082 (12)0.0202 (13)
C70.0139 (11)0.0195 (12)0.0154 (11)0.0018 (9)0.0029 (9)0.0033 (9)
C80.0263 (14)0.0195 (13)0.0260 (13)0.0067 (10)0.0128 (11)0.0051 (10)
C90.0161 (12)0.0176 (12)0.0166 (11)0.0048 (10)0.0068 (10)0.0018 (9)
C100.0187 (13)0.0334 (15)0.0181 (12)0.0028 (11)0.0053 (10)0.0053 (10)
Geometric parameters (Å, º) top
Cu1—O21.9643 (19)C3—C41.371 (4)
Cu1—O41.9677 (17)C4—C51.385 (4)
Cu1—N12.189 (2)C7—C81.505 (4)
Cu1—O3i1.9625 (19)C9—C101.506 (4)
Cu1—O5i1.9692 (17)C1—H10.9300
O1—C61.204 (4)C3—H30.9300
O2—C71.257 (3)C4—H40.9300
O3—C71.258 (3)C5—H50.9300
O4—C91.260 (3)C6—H60.9300
O5—C91.260 (3)C8—H8A0.9600
N1—C11.333 (4)C8—H8B0.9600
N1—C51.340 (3)C8—H8C0.9600
C1—C21.386 (4)C10—H10A0.9600
C2—C31.391 (4)C10—H10B0.9600
C2—C61.483 (4)C10—H10C0.9600
O2—Cu1—O489.70 (8)O3—C7—C8117.9 (2)
O2—Cu1—N192.99 (8)O4—C9—O5125.2 (2)
O2—Cu1—O3i168.80 (8)O4—C9—C10117.59 (19)
O2—Cu1—O5i90.47 (8)O5—C9—C10117.3 (2)
O4—Cu1—N194.72 (7)N1—C1—H1118.00
O3i—Cu1—O488.36 (8)C2—C1—H1119.00
O4—Cu1—O5i168.89 (7)C2—C3—H3121.00
O3i—Cu1—N198.16 (7)C4—C3—H3121.00
O5i—Cu1—N196.36 (7)C3—C4—H4120.00
O3i—Cu1—O5i89.32 (8)C5—C4—H4120.00
Cu1—O2—C7124.41 (17)N1—C5—H5118.00
Cu1i—O3—C7121.63 (16)C4—C5—H5119.00
Cu1—O4—C9123.33 (14)O1—C6—H6118.00
Cu1i—O5—C9122.48 (15)C2—C6—H6118.00
Cu1—N1—C1122.12 (14)C7—C8—H8A109.00
Cu1—N1—C5120.33 (19)C7—C8—H8B110.00
C1—N1—C5117.6 (2)C7—C8—H8C109.00
N1—C1—C2123.1 (2)H8A—C8—H8B109.00
C1—C2—C3118.7 (3)H8A—C8—H8C109.00
C1—C2—C6120.3 (3)H8B—C8—H8C110.00
C3—C2—C6121.0 (3)C9—C10—H10A109.00
C2—C3—C4118.6 (3)C9—C10—H10B109.00
C3—C4—C5119.1 (3)C9—C10—H10C110.00
N1—C5—C4123.1 (3)H10A—C10—H10B109.00
O1—C6—C2123.3 (3)H10A—C10—H10C110.00
O2—C7—O3125.1 (2)H10B—C10—H10C109.00
O2—C7—C8117.1 (2)
O2—Cu1—N1—C182.47 (19)Cu1—O2—C7—C8176.00 (17)
O2—Cu1—N1—C597.24 (19)Cu1—O2—C7—O33.4 (3)
O4—Cu1—N1—C1172.41 (18)Cu1i—O3—C7—O22.2 (3)
O4—Cu1—N1—C57.30 (19)Cu1i—O3—C7—C8177.20 (17)
O3i—Cu1—N1—C198.57 (19)Cu1—O4—C9—O52.2 (3)
O3i—Cu1—N1—C581.72 (19)Cu1—O4—C9—C10177.83 (16)
O5i—Cu1—N1—C18.34 (19)Cu1i—O5—C9—O40.1 (3)
O5i—Cu1—N1—C5171.95 (18)Cu1i—O5—C9—C10179.91 (17)
O4—Cu1—O2—C786.4 (2)Cu1—N1—C1—C2179.13 (19)
N1—Cu1—O2—C7178.9 (2)C5—N1—C1—C21.2 (4)
O5i—Cu1—O2—C782.5 (2)Cu1—N1—C5—C4179.93 (19)
O5—Cu1i—O3—C785.16 (19)C1—N1—C5—C40.4 (4)
O4i—Cu1i—O3—C783.97 (19)N1—C1—C2—C6179.4 (2)
N1i—Cu1i—O3—C7178.51 (18)N1—C1—C2—C30.9 (4)
O2—Cu1—O4—C980.85 (19)C1—C2—C6—O1177.5 (3)
N1—Cu1—O4—C9173.83 (18)C6—C2—C3—C4179.5 (3)
O3i—Cu1—O4—C988.12 (19)C1—C2—C3—C40.2 (4)
O3—Cu1i—O5—C986.94 (19)C3—C2—C6—O12.8 (5)
O2i—Cu1i—O5—C981.86 (19)C2—C3—C4—C50.9 (4)
N1i—Cu1i—O5—C9174.92 (18)C3—C4—C5—N10.7 (4)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.433.262 (4)148
C6—H6···O3iii0.932.563.449 (4)159
C8—H8B···O3iv0.962.603.542 (3)168
C10—H10C···O2v0.962.483.420 (4)167
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+2, y+1, z+2; (iv) x+1, y, z+2; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.433.262 (4)148
C6—H6···O3ii0.932.563.449 (4)159
C8—H8B···O3iii0.962.603.542 (3)168
C10—H10C···O2iv0.962.483.420 (4)167
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y, z+2; (iv) x1, y, z.
Acknowledgements top

This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2011/033). ABC thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.

references
References top

Aakeröy, C. B., Beatty, A. M., Desper, J., O'Shea, M. & Valdés-Martínez, J. (2003). Dalton Trans. pp. 3956–3962.

Asem, S., Buchanan, R. M. & Mashuta, M. S. (2011). Acta Cryst. E67, m1892–m1893.

Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1636.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457–464.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sieroń, L. (2004). Acta Cryst. E60, m577–m578.

Trivedi, M., Nagarajan, R., Kumar, A., Molloy, K. C., Kociok-Köhn, G. & Sudlow, A. L. (2011). Inorg. Chem. Commun. 14, 920–924.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.