metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1388-m1389

4-(Di­methyl­amino)­pyridinium octa­aqua­erbium(III) tetra­chloride monohydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 10 October 2012; accepted 15 October 2012; online 20 October 2012)

In the title compound, (C7H11N2)[Er(H2O)8]Cl4·H2O, the asymmetric unit consists of one 4-(dimethyl­amino)­pyridinium and one octa­aqua­erbium cation balanced by four Cl anions, and one water mol­ecule. The 4-(dimethyl­amino)­pyridinium cation is protonated at the pyridine N atom. The dimethyl­amino group (C/N/C) lies close to the plane of the pyridinium ring, making a dihedral angle of 4.5 (3)°. In the crystal, the [Er(H2O)8]3+ cations are linked via O—H⋯O and O—H⋯Cl hydrogen bonds, forming two-dimensional networks propagating in the ab plane. These networks are linked via O—H⋯O and O—H⋯Cl hydrogen bonds, forming a three-dimensional network. The 4-(dimethyl­amino)­pyridinium cations are located in the cavities and are linked to the framework via N—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

For similar structures in this series involving 4-(dimethyl­amino)­pyridinium, see: Benslimane et al. (2012a[Benslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012a). Acta Cryst. E68, m1321-m1322.],b[Benslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012b). Acta Cryst. E68, m1342-m1343.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[Er(H2O)8]Cl4·H2O

  • Mr = 594.38

  • Triclinic, [P \overline 1]

  • a = 7.8775 (3) Å

  • b = 9.3601 (4) Å

  • c = 15.2593 (6) Å

  • α = 105.831 (3)°

  • β = 101.498 (3)°

  • γ = 90.919 (3)°

  • V = 1057.77 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.51 mm−1

  • T = 180 K

  • 0.35 × 0.17 × 0.09 mm

Data collection
  • Agilent Xcalibur Sapphire1 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.415, Tmax = 0.666

  • 21843 measured reflections

  • 4315 independent reflections

  • 4110 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.038

  • S = 1.12

  • 4315 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 2.53 3.229 (2) 139
O1W—H1W⋯Cl3i 0.85 2.44 3.2686 (18) 165
O1W—H2W⋯Cl3ii 0.85 2.25 3.0874 (18) 171
O1—H11⋯Cl4iii 0.85 2.29 3.1036 (18) 160
O1—H12⋯Cl1 0.85 2.24 3.0863 (17) 172
O2—H21⋯Cl1 0.85 2.25 3.0708 (17) 164
O2—H22⋯Cl2 0.84 2.31 3.1372 (17) 167
O3—H31⋯O1W 0.85 1.82 2.671 (2) 177
O3—H32⋯Cl3 0.84 2.37 3.1826 (17) 162
O4—H41⋯Cl4 0.85 2.25 3.0925 (17) 169
O4—H42⋯Cl2 0.85 2.23 3.0685 (16) 168
O5—H51⋯Cl4 0.85 2.33 3.1469 (18) 160
O5—H52⋯Cl2iv 0.85 2.27 3.0819 (18) 161
O6—H61⋯Cl4v 0.85 2.27 3.1164 (17) 171
O6—H62⋯Cl1vi 0.85 2.25 3.0858 (17) 169
O7—H71⋯Cl3 0.84 2.19 3.0304 (18) 173
O7—H72⋯Cl1iv 0.85 2.30 3.1132 (18) 159
O8—H81⋯Cl4vii 0.85 2.29 3.1377 (17) 173
O8—H82⋯Cl2vii 0.85 2.31 3.1464 (17) 166
C2—H2⋯Cl3viii 0.93 2.77 3.683 (3) 169
C3—H3⋯O1Wiii 0.93 2.51 3.332 (3) 148
C6—H6B⋯O4ii 0.96 2.47 3.379 (3) 158
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x+2, -y+1, -z; (vi) -x+1, -y, -z; (vii) -x+1, -y+1, -z; (viii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is part of a series of lanthanide complexes with the organic cation 4-(dimethylamino)pyridinium, for example: (C7H10N2)2.LaCl(H2O)8.Cl4.3H2O (I) (Benslimane et al., 2012a) and (C7H10N2)3.[Nd2Cl4(H2O)10].Cl5.2H2O (II) (Benslimane et al., 2012b).

The title compound (III) contains an inorganic [Er(H2O)8]3+ and an organic (C7H10N2)+ cation equilibrated by four Cl anions, and one lattice water molecule (Fig. 1). Atom Er1 is coordinated by eight water molecules with Er-O bond distances ranging from 2.2989 (15) to 2.3807 (15) Å. The [Er(H2O)8]3+ cations are linked to the organic cations via Cl- anions through intermolecular O-H···Cl and N-H···Cl hydrogen bonds. Each Cl- anion acts as an acceptor of hydrogen bonds from the pyridinium groups and the water molecules. The water molecules, which act as bridging units between the cations, form cooperative infinite chains parallel to the (100) plane through O-H···Cl hydrogen bonds generating centrosymmetric R24(8) ring motives (Bernstein et al., 1995), as shown in Fig. 2 and Table 1.

In the three compounds, (I) - (III), there is a decrease in the bond lengths of the metal-O(water) bonds, from 2.5101 (15) - 2.5632 (15) Å in (I), 2.404 (3) - 2.479 (4) Å in (II) and 2.2989 (15) - 2.3807 (15) Å in (III). This trend corresponds to the decreasing metallic radius of the lanthanide ion involved; La3+, Nd3+ and Er3+, respectively. In addition, the 4-(dimethylamino)pyridinium cation in the three compounds is protonated at the pyridine N atom. The N-C bond linking the dimethylamino substituent to the pyridinium ring is short, 1.321 (3), 1.324 (3)Å for (I), 1.330 (5), 1.2855 (2) Å for (II) and 1.331 (3) Å for (III), suggesting some delocalization in the cation. A search of the Cambridge Structural Database (CSD, V5.33, Update 4, August 2012; Allen, 2002) reveals similar structures incorporating the 4-(dimethylamino)pyridinium cation for which the corresponding mean N-C distance is 1.34 (1) Å. The dimethylamino group lies close to the plane of the pyridinium ring, with dihedral angles of 3.5 (3) and 2.0 (3)° for (I), 1.6 (6)° and 6.5 (3)° for (II) and 4.5 (3)° for (III).

In conclusion, on the structural level the atomic arrangement in all three compounds, (I) - (III), consists of networks of alternating organic–inorganic layers. The chloride anions are located between these entities forming hydrogen bonds with the NH atoms of the 4-(dimethylamino)pyridinium cations and the water molecules. There are also C—H···Cl interactions present involving one of the 4-(dimethylamino)pyridinium cations. The result is the formation of three-dimensional supramolecular architectures.

Related literature top

For similar structures in this series involving 4-(dimethylamino)pyridinium, see: Benslimane et al. (2012a,b). For details of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs see: Bernstein et al. (1995).

Experimental top

4-(Dimethylamino)pyridine (1 mmol, 0.051g) and hydrochloric acid (1M) was added slowly to a solution of ErCl3.6H2O (1mmol, 0.08g). The mixture was refluxed at 353 K for about 1 h and then cooled to room temperature. Slow evaporation of the solvent at room temperature lead to the formation of pink plate-like crystals of the title compound.

Refinement top

The H-atoms of the coordinated water molecules were located in difference Fourier syntheses and were initially refined using distance restraints: O-H = 0.85 (2) Å, and H···H= 1.40 (2) Å, with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement they were constrained to ride on their parent O atoms. The N-bound H atom was located in a difference Fourier map but like the C-bound H atoms it was included in calculated positions and treated as riding: N-H=0.86 Å, C-H = 0.93 (aromatic), 0.96 (methyl), with Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(N,C) for the other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level. The O-H···Cl and N-H···Cl hydrogen bonds are shown as double dashed lines.
[Figure 2] Fig. 2. A view of part of the crystal structure of the title compound lying parallel to (100), showing the formation of rings via O-H···Cl and N-H···Cl hydrogen-bonds. Hydrogen bonds are drawn as dashed lines [symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z].
4-(Dimethylamino)pyridinium octaaquaerbium(III) tetrachloride monohydrate top
Crystal data top
(C7H11N2)[Er(H2O)8]Cl4·H2OZ = 2
Mr = 594.38F(000) = 586
Triclinic, P1Dx = 1.866 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8775 (3) ÅCell parameters from 17643 reflections
b = 9.3601 (4) Åθ = 2.8–28.5°
c = 15.2593 (6) ŵ = 4.51 mm1
α = 105.831 (3)°T = 180 K
β = 101.498 (3)°Plate, pink
γ = 90.919 (3)°0.35 × 0.17 × 0.09 mm
V = 1057.77 (8) Å3
Data collection top
Agilent Xcalibur Sapphire1
diffractometer
4315 independent reflections
Radiation source: fine-focus sealed tube4110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.415, Tmax = 0.666l = 1919
21843 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0184P)2 + 0.1863P]
where P = (Fo2 + 2Fc2)/3
4315 reflections(Δ/σ)max = 0.013
210 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
(C7H11N2)[Er(H2O)8]Cl4·H2Oγ = 90.919 (3)°
Mr = 594.38V = 1057.77 (8) Å3
Triclinic, P1Z = 2
a = 7.8775 (3) ÅMo Kα radiation
b = 9.3601 (4) ŵ = 4.51 mm1
c = 15.2593 (6) ÅT = 180 K
α = 105.831 (3)°0.35 × 0.17 × 0.09 mm
β = 101.498 (3)°
Data collection top
Agilent Xcalibur Sapphire1
diffractometer
4315 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4110 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.666Rint = 0.031
21843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 1.12Δρmax = 0.38 e Å3
4315 reflectionsΔρmin = 0.84 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.784214 (11)0.328931 (10)0.139815 (6)0.01301 (4)
O10.6913 (2)0.08907 (17)0.13083 (13)0.0290 (4)
H110.74090.01120.10940.043*
H120.59210.06450.13820.043*
O20.49910 (19)0.33181 (16)0.16570 (11)0.0196 (3)
H210.43520.25300.15510.029*
H220.43820.40560.17160.029*
O30.8148 (2)0.37949 (19)0.29989 (11)0.0246 (4)
H310.73910.42450.32750.037*
H320.90630.37470.33820.037*
O40.71203 (19)0.58031 (16)0.18827 (11)0.0202 (3)
H410.74420.63800.15930.030*
H420.61190.60100.19830.030*
O50.9675 (2)0.48121 (18)0.09471 (12)0.0231 (4)
H510.93160.55250.07280.035*
H521.07240.50450.12380.035*
O60.8996 (2)0.16376 (17)0.02461 (11)0.0222 (3)
H610.98470.19310.00550.033*
H620.82780.10970.02220.033*
O71.0635 (2)0.27890 (19)0.20245 (12)0.0275 (4)
H711.10900.31330.25970.041*
H721.11580.20530.17700.041*
O80.6080 (2)0.33727 (19)0.00199 (11)0.0253 (4)
H810.49870.31600.01030.038*
H820.63980.33420.04860.038*
N10.5425 (3)0.0329 (2)0.34543 (14)0.0269 (5)
H10.47170.06510.29230.032*
N20.8825 (3)0.1213 (2)0.59717 (14)0.0255 (4)
C10.7717 (3)0.0707 (3)0.51542 (16)0.0205 (5)
C20.7091 (3)0.0813 (3)0.47840 (17)0.0228 (5)
H20.74530.14900.51170.027*
C30.5969 (3)0.1280 (3)0.39497 (17)0.0250 (5)
H30.55680.22790.37150.030*
C40.5976 (3)0.1126 (3)0.37797 (18)0.0290 (6)
H40.55760.17690.34280.035*
C50.7091 (3)0.1666 (3)0.46032 (18)0.0264 (5)
H50.74560.26740.48140.032*
C60.9502 (4)0.2769 (3)0.6311 (2)0.0363 (6)
H6A0.98890.30590.58220.054*
H6B1.04590.28910.68320.054*
H6C0.86020.33830.65040.054*
C70.9373 (3)0.0284 (3)0.65895 (18)0.0331 (6)
H7A0.84820.04930.64840.050*
H7B0.95710.08830.72260.050*
H7C1.04270.01500.64650.050*
Cl10.32218 (7)0.03390 (6)0.16034 (4)0.01959 (11)
Cl20.33046 (7)0.63783 (6)0.19098 (4)0.02174 (12)
Cl40.78967 (7)0.76450 (6)0.05870 (4)0.02396 (12)
Cl31.20318 (8)0.38429 (7)0.41119 (4)0.03275 (15)
O1W0.5751 (2)0.5134 (2)0.38849 (12)0.0326 (4)
H1W0.47010.48920.38660.049*
H2W0.63350.53100.44390.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01068 (5)0.01438 (6)0.01302 (6)0.00048 (4)0.00106 (4)0.00335 (4)
O10.0269 (9)0.0144 (8)0.0502 (12)0.0028 (7)0.0212 (8)0.0073 (8)
O20.0153 (8)0.0132 (7)0.0304 (9)0.0007 (6)0.0061 (7)0.0052 (7)
O30.0201 (8)0.0383 (10)0.0147 (8)0.0082 (7)0.0020 (7)0.0075 (7)
O40.0182 (8)0.0181 (8)0.0250 (9)0.0000 (6)0.0059 (7)0.0062 (7)
O50.0150 (8)0.0236 (9)0.0343 (10)0.0008 (6)0.0043 (7)0.0149 (8)
O60.0164 (8)0.0263 (9)0.0194 (8)0.0032 (6)0.0059 (6)0.0024 (7)
O70.0196 (9)0.0364 (10)0.0200 (9)0.0126 (7)0.0023 (7)0.0014 (7)
O80.0152 (8)0.0432 (11)0.0168 (8)0.0004 (7)0.0002 (6)0.0097 (8)
N10.0245 (11)0.0337 (12)0.0179 (10)0.0012 (9)0.0032 (8)0.0052 (9)
N20.0265 (11)0.0243 (11)0.0207 (11)0.0009 (8)0.0026 (9)0.0036 (9)
C10.0179 (11)0.0228 (12)0.0202 (12)0.0011 (9)0.0055 (9)0.0042 (10)
C20.0237 (12)0.0214 (12)0.0229 (12)0.0016 (9)0.0032 (10)0.0069 (10)
C30.0264 (13)0.0210 (12)0.0250 (13)0.0021 (10)0.0045 (10)0.0031 (10)
C40.0290 (14)0.0299 (14)0.0295 (14)0.0029 (11)0.0021 (11)0.0136 (11)
C50.0301 (13)0.0207 (12)0.0285 (13)0.0004 (10)0.0032 (11)0.0091 (10)
C60.0373 (15)0.0268 (14)0.0338 (15)0.0051 (11)0.0026 (12)0.0021 (12)
C70.0323 (14)0.0390 (16)0.0246 (14)0.0000 (12)0.0044 (11)0.0108 (12)
Cl10.0179 (3)0.0183 (3)0.0215 (3)0.0010 (2)0.0016 (2)0.0057 (2)
Cl20.0182 (3)0.0212 (3)0.0242 (3)0.0015 (2)0.0031 (2)0.0048 (2)
Cl40.0187 (3)0.0194 (3)0.0383 (3)0.0041 (2)0.0103 (2)0.0123 (2)
Cl30.0335 (3)0.0336 (3)0.0244 (3)0.0001 (3)0.0101 (3)0.0088 (3)
O1W0.0283 (10)0.0454 (11)0.0188 (9)0.0036 (8)0.0020 (7)0.0022 (8)
Geometric parameters (Å, º) top
Er1—O82.2989 (15)O8—H820.8517
Er1—O12.3097 (16)N1—C31.341 (3)
Er1—O32.3195 (16)N1—C41.347 (3)
Er1—O72.3263 (15)N1—H10.8600
Er1—O52.3356 (15)N2—C11.331 (3)
Er1—O62.3465 (15)N2—C61.458 (3)
Er1—O22.3561 (15)N2—C71.459 (3)
Er1—O42.3807 (15)C1—C21.419 (3)
O1—H110.8493C1—C51.420 (3)
O1—H120.8484C2—C31.352 (3)
O2—H210.8455C2—H20.9300
O2—H220.8425C3—H30.9300
O3—H310.8495C4—C51.344 (4)
O3—H320.8439C4—H40.9300
O4—H410.8497C5—H50.9300
O4—H420.8485C6—H6A0.9600
O5—H510.8522C6—H6B0.9600
O5—H520.8499C6—H6C0.9600
O6—H610.8514C7—H7A0.9600
O6—H620.8480C7—H7B0.9600
O7—H710.8439C7—H7C0.9600
O7—H720.8498O1W—H1W0.8471
O8—H810.8520O1W—H2W0.8491
O8—Er1—O195.94 (6)Er1—O6—H61120.3
O8—Er1—O3146.14 (6)Er1—O6—H62117.0
O1—Er1—O386.60 (6)H61—O6—H62108.2
O8—Er1—O7142.03 (6)Er1—O7—H71122.0
O1—Er1—O788.39 (6)Er1—O7—H72124.1
O3—Er1—O771.64 (6)H71—O7—H72111.0
O8—Er1—O581.09 (6)Er1—O8—H81122.4
O1—Er1—O5146.98 (6)Er1—O8—H82126.5
O3—Er1—O5114.04 (6)H81—O8—H82108.6
O7—Er1—O575.30 (6)C3—N1—C4120.7 (2)
O8—Er1—O675.79 (6)C3—N1—H1119.7
O1—Er1—O671.78 (6)C4—N1—H1119.7
O3—Er1—O6135.91 (6)C1—N2—C6120.7 (2)
O7—Er1—O669.84 (6)C1—N2—C7122.8 (2)
O5—Er1—O675.65 (6)C6—N2—C7116.4 (2)
O8—Er1—O274.29 (6)N2—C1—C2122.3 (2)
O1—Er1—O271.93 (5)N2—C1—C5121.6 (2)
O3—Er1—O274.51 (6)C2—C1—C5116.2 (2)
O7—Er1—O2141.61 (6)C3—C2—C1120.3 (2)
O5—Er1—O2136.56 (5)C3—C2—H2119.9
O6—Er1—O2129.45 (5)C1—C2—H2119.9
O8—Er1—O481.90 (6)N1—C3—C2121.2 (2)
O1—Er1—O4141.90 (6)N1—C3—H3119.4
O3—Er1—O475.79 (6)C2—C3—H3119.4
O7—Er1—O4116.47 (6)C5—C4—N1121.3 (2)
O5—Er1—O470.61 (5)C5—C4—H4119.3
O6—Er1—O4141.89 (6)N1—C4—H4119.3
O2—Er1—O470.91 (5)C4—C5—C1120.4 (2)
Er1—O1—H11125.4C4—C5—H5119.8
Er1—O1—H12124.1C1—C5—H5119.8
H11—O1—H12109.5N2—C6—H6A109.5
Er1—O2—H21122.4N2—C6—H6B109.5
Er1—O2—H22125.8H6A—C6—H6B109.5
H21—O2—H22109.7N2—C6—H6C109.5
Er1—O3—H31121.3H6A—C6—H6C109.5
Er1—O3—H32126.0H6B—C6—H6C109.5
H31—O3—H32111.3N2—C7—H7A109.5
Er1—O4—H41115.9N2—C7—H7B109.5
Er1—O4—H42121.1H7A—C7—H7B109.5
H41—O4—H42108.9N2—C7—H7C109.5
Er1—O5—H51122.7H7A—C7—H7C109.5
Er1—O5—H52121.2H7B—C7—H7C109.5
H51—O5—H52108.1H1W—O1W—H2W109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.533.229 (2)139
O1W—H1W···Cl3i0.852.443.2686 (18)165
O1W—H2W···Cl3ii0.852.253.0874 (18)171
O1—H11···Cl4iii0.852.293.1036 (18)160
O1—H12···Cl10.852.243.0863 (17)172
O2—H21···Cl10.852.253.0708 (17)164
O2—H22···Cl20.842.313.1372 (17)167
O3—H31···O1W0.851.822.671 (2)177
O3—H32···Cl30.842.373.1826 (17)162
O4—H41···Cl40.852.253.0925 (17)169
O4—H42···Cl20.852.233.0685 (16)168
O5—H51···Cl40.852.333.1469 (18)160
O5—H52···Cl2iv0.852.273.0819 (18)161
O6—H61···Cl4v0.852.273.1164 (17)171
O6—H62···Cl1vi0.852.253.0858 (17)169
O7—H71···Cl30.842.193.0304 (18)173
O7—H72···Cl1iv0.852.303.1132 (18)159
O8—H81···Cl4vii0.852.293.1377 (17)173
O8—H82···Cl2vii0.852.313.1464 (17)166
C2—H2···Cl3viii0.932.773.683 (3)169
C3—H3···O1Wiii0.932.513.332 (3)148
C6—H6B···O4ii0.962.473.379 (3)158
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z; (v) x+2, y+1, z; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula(C7H11N2)[Er(H2O)8]Cl4·H2O
Mr594.38
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)7.8775 (3), 9.3601 (4), 15.2593 (6)
α, β, γ (°)105.831 (3), 101.498 (3), 90.919 (3)
V3)1057.77 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.35 × 0.17 × 0.09
Data collection
DiffractometerAgilent Xcalibur Sapphire1
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.415, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
21843, 4315, 4110
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.038, 1.12
No. of reflections4315
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.84

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.533.229 (2)139
O1W—H1W···Cl3i0.852.443.2686 (18)165
O1W—H2W···Cl3ii0.852.253.0874 (18)171
O1—H11···Cl4iii0.852.293.1036 (18)160
O1—H12···Cl10.852.243.0863 (17)172
O2—H21···Cl10.852.253.0708 (17)164
O2—H22···Cl20.842.313.1372 (17)167
O3—H31···O1W0.851.822.671 (2)177
O3—H32···Cl30.842.373.1826 (17)162
O4—H41···Cl40.852.253.0925 (17)169
O4—H42···Cl20.852.233.0685 (16)168
O5—H51···Cl40.852.333.1469 (18)160
O5—H52···Cl2iv0.852.273.0819 (18)161
O6—H61···Cl4v0.852.273.1164 (17)171
O6—H62···Cl1vi0.852.253.0858 (17)169
O7—H71···Cl30.842.193.0304 (18)173
O7—H72···Cl1iv0.852.303.1132 (18)159
O8—H81···Cl4vii0.852.293.1377 (17)173
O8—H82···Cl2vii0.852.313.1464 (17)166
C2—H2···Cl3viii0.932.773.683 (3)169
C3—H3···O1Wiii0.932.513.332 (3)148
C6—H6B···O4ii0.962.473.379 (3)158
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z; (v) x+2, y+1, z; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) x+2, y, z+1.
 

Acknowledgements

Technical support (X-ray measurements) from Laboratory of Coordination Chemistry, UPR-CNRS 8241, Toulouse, are acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBenslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012a). Acta Cryst. E68, m1321–m1322.  CSD CrossRef IUCr Journals Google Scholar
First citationBenslimane, M., Merazig, H., Daran, J.-C. & Zeghouan, O. (2012b). Acta Cryst. E68, m1342–m1343.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1388-m1389
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds