organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3213-o3214

Ethyl 2-[2-(4-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)hydrazin-1-yl­­idene]-3,4-di­methyl-2,3-di­hydro-1,3-thia­zole-5-carboxyl­ate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cYesilyurt Demir Celik Vocational School, Ondokuz Mayis University, Samsun, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, TR-55139 Samsun, Turkey, and eDepartment of Chemistry, Karabük University, 78200 Karabük, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 19 October 2012; accepted 22 October 2012; online 27 October 2012)

The title compound, C16H19N3O4S, is almost planar, with a dihedral angle of 2.88 (9)° between the mean planes of the benzene and thia­zole rings. The mol­ecule adopts an E conformation about the two C=N bonds, with a C—N—N—C torsion angle of −177.01 (11)°. An intra­molecular C—H⋯O hydrogen bond exists between a thia­zole methyl group and the formic acid ethyl ester carbonyl O atom. In the crystal, mol­ecules are linked by O—-H⋯O hydrogen bonds, forming chains propagating along [2-10]. The chains are linked via C—H⋯O hydrogen bonds with R22(12) ring motifs, forming sheets lying parallel to (12-2). The sheets are further linked through out-of-plane C—H⋯N hydrogen bonds with R22(12) ring motifs and C—H⋯π inter­actions, forming an inter­esting three-dimensional supra­molecular architecture.

Related literature

For the various biological activities of 1,3-thia­zoles, 1,3,4-thia­diazo­les and their derivatives, see: Shucla et al. (1984[Shucla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 168-171.]); Desai & Baxi (1992[Desai, K. & Baxi, A. J. (1992). Indian J. Pharm. Sci. 54, 183-188.]); Mullican et al. (1993[Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090-1099.]); Chapleo et al. (1986[Chapleo, C. B., Myers, M., Myers, P. L., Saville, J. F., Smith, A. C. B., Stilling, M. R., Tulloch, I. F., Walter, D. S. & Welbourne, A. P. (1986). J. Med. Chem. 29, 2273-2280.]); Turner et al. (1988[Turner, S., Myers, M., Gadie, B., Hale, S. A., Horsley, A., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. & Berridge, T. L. (1988). J. Med. Chem. 31, 906-913.]); Mazzone et al. (1993[Mazzone, G., Pignatello, R., Mazzone, S., Panico, A., Penisi, G., Castana, R. & Mazzone, P. (1993). Il Farmaco, 48, 1207-1224.]); Miyamoto et al. (1985[Miyamoto, K., Koshiura, R., Mori, M., Yokoi, H., Mori, C., Hasegawa, T. & Takatori, K. (1985). Chem. Pharm. Bull. 33, 5126-5129.]); Hanna et al. (1995[Hanna, M. A., Girges, M. M., Rasala, D. & Gawinecki, R. (1995). Arzneim. Forsch. Drug. Res. 45, 1074-1078.]); Oh et al. (2002[Oh, C.-H., Cho, H.-W., Baek, D. & Cho, J.-H. (2002). Eur. J. Med. Chem. 37, 743-754.]). For the anti­microbial activity of thia­diazo­les and related compounds, see: Sancak et al. (2007[Sancak, K., Ünver, Y. & Er, M. (2007). Turk. J. Chem. 31, 125-134.]). For bond lengths of structurally related mol­ecules, see: Imhof & Wunderle (2012[Imhof, W. & Wunderle, J. (2012). Acta Cryst. E68, o2741.]); Randell et al. (2012[Randell, N. M., Thompson, L. K. & Dawe, L. N. (2012). Acta Cryst. E68, o2711.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For synthetic details, see: Er et al. (2009[Er, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). Arkivoc, II, 149-167.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O4S

  • Mr = 349.40

  • Triclinic, [P \overline 1]

  • a = 6.8957 (3) Å

  • b = 10.2716 (5) Å

  • c = 12.7297 (6) Å

  • α = 74.843 (4)°

  • β = 87.579 (4)°

  • γ = 73.304 (4)°

  • V = 833.06 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.96 mm−1

  • T = 123 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.508, Tmax = 0.591

  • 5272 measured reflections

  • 3316 independent reflections

  • 3254 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.02

  • 3316 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2 0.98 2.28 3.0111 (19) 130
O4—H4O⋯O2i 0.84 1.85 2.6878 (14) 176
C16—H16A⋯O4ii 0.98 2.41 3.3824 (18) 171
C8—H8C⋯N3iii 0.98 2.62 3.3986 (19) 137
C6—H6BCg1iv 0.98 2.96 3.6414 (16) 128
C7—H7CCg1v 0.98 2.62 3.4762 (16) 146
Symmetry codes: (i) x-2, y+1, z; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) x+1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-thiazoles, 1,3,4-thiadiazoles and their derivatives exhibit various biological activities, such as antituberculosis (Shucla, et al., 1984), antimicrobial (Desai & Baxi, 1992), anti-inflammatory (Mullican et al., 1993), antiviral, anticonvulsant (Chapleo et al., 1986), antihypertensive (Turner et al., 1988), local anesthetic (Mazzone et al., 1993), anticancer (Miyamoto et al., 1985), hypoglycemic (Hanna et al., 1995), and cytotoxic activities (Oh et al., 2002). Thiadiazoles and related compounds are of great interest in chemistry owing to their bioactivity with certain plant growth regulating effects as well as antimicrobial activity (Sancak et al., 2007). Owing to the importance of these 1,3,4-thiadiazoles derivatives, we report herein on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The N2—N3 single bond [1.3982 (16) Å] and the N2C1 double bond [1.2958 (18) Å] distances are in the normal range and are comparable with those found for similar compounds (Imhof & Wunderle, 2012; Randell et al., 2012). Bond lengths and angles can be regarded as normal (Allen, 2002). The molecule adopts an E conformation about the C1N2 and the C9N3 bonds with a C9—N3—N2—C1 torsion angle of -177.01 (11) °. The 2-methoxy-phenol ring (C10—C15) and the thiazole ring (C1/N1/C2/C3/S1) are coplanar with a dihedral angle between their mean planes of only 2.88 (9) °. An intramolecular C—H···O hydrogen bond exists between the thiazol methyl group and atom O2 of the formic acid ethyl ester CO O atom.

In the crystal, an interesting supramolecular architecture is formed as the molecules link up to form sheets in plane (1 2 -2) through both C—H···O R22(12) ring motifs (Bernstein et al., 1995) and O—H···O interactions. These sheets are further linked through out-of-plane C—H···N R22(12) ring motifs and C-H···π interactions (Table 1 and Fig. 2).

Related literature top

For the various biological activities of 1,3-thiazoles, 1,3,4-thiadiazoles and their derivatives, see: Shucla et al. (1984); Desai & Baxi (1992); Mullican et al. (1993); Chapleo et al. (1986); Turner et al. (1988); Mazzone et al. (1993); Miyamoto et al. (1985); Hanna et al. (1995); Oh et al. (2002). For the antimicrobial activity of thiadiazoles and related compounds, see: Sancak et al. (2007). For bond lengths of structurally related molecules, see: Imhof & Wunderle (2012); Randell et al. (2012). For details of the Cambridge Structural Database, see: Allen (2002). For synthetic details, see: Er et al. (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the published procedure (Er et al., 2009). Crystals were grown by slow evaporation of a 1 3-dichloro-2-propanol solution.

Refinement top

The H atoms were placed in calculated positions and refined in the riding mode: O—H = 0.84 Å, C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(O,C) for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular C—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines - see Table 1 for details.
Ethyl 2-[2-(4-hydroxy-3-methoxybenzylidene)hydrazin-1-ylidene]- 3,4-dimethyl-2,3-dihydro-1,3-thiazole-5-carboxylate top
Crystal data top
C16H19N3O4SZ = 2
Mr = 349.40F(000) = 368
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.8957 (3) ÅCell parameters from 4259 reflections
b = 10.2716 (5) Åθ = 3.6–75.0°
c = 12.7297 (6) ŵ = 1.96 mm1
α = 74.843 (4)°T = 123 K
β = 87.579 (4)°Block, yellow
γ = 73.304 (4)°0.40 × 0.35 × 0.30 mm
V = 833.06 (7) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3316 independent reflections
Radiation source: Enhance (Cu) X-ray Source3254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.5081 pixels mm-1θmax = 75.2°, θmin = 3.6°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
k = 1212
Tmin = 0.508, Tmax = 0.591l = 1415
5272 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.3221P]
where P = (Fo2 + 2Fc2)/3
3316 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H19N3O4Sγ = 73.304 (4)°
Mr = 349.40V = 833.06 (7) Å3
Triclinic, P1Z = 2
a = 6.8957 (3) ÅCu Kα radiation
b = 10.2716 (5) ŵ = 1.96 mm1
c = 12.7297 (6) ÅT = 123 K
α = 74.843 (4)°0.40 × 0.35 × 0.30 mm
β = 87.579 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3316 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
3254 reflections with I > 2σ(I)
Tmin = 0.508, Tmax = 0.591Rint = 0.016
5272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
3316 reflectionsΔρmin = 0.29 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70492 (5)0.40814 (3)0.24740 (3)0.02041 (12)
N10.66196 (18)0.27633 (12)0.10704 (9)0.0211 (3)
N20.36294 (18)0.44474 (12)0.12687 (9)0.0215 (2)
N30.28500 (18)0.54591 (12)0.18464 (9)0.0209 (2)
O11.09737 (14)0.30755 (10)0.35164 (8)0.0228 (2)
O21.25414 (15)0.14195 (11)0.26529 (9)0.0262 (2)
O30.01284 (15)0.91719 (11)0.41058 (8)0.0250 (2)
O40.36639 (15)1.02884 (11)0.35124 (9)0.0260 (2)
H4O0.48611.06020.32580.031*
C10.5524 (2)0.38117 (14)0.15329 (11)0.0197 (3)
C20.8616 (2)0.21847 (14)0.14284 (11)0.0209 (3)
C30.9110 (2)0.27517 (14)0.21950 (11)0.0207 (3)
C41.1041 (2)0.23365 (14)0.27913 (11)0.0209 (3)
C51.2838 (2)0.27620 (15)0.41589 (11)0.0229 (3)
H5A1.39930.27940.36740.027*
H5B1.31310.18100.46640.027*
C61.2533 (2)0.38483 (16)0.47858 (12)0.0277 (3)
H6A1.37670.36710.52200.042*
H6B1.13990.37990.52700.042*
H6C1.22340.47860.42780.042*
C70.9959 (2)0.10729 (15)0.09540 (12)0.0256 (3)
H7A1.13270.07810.12830.038*
H7B1.00110.14490.01650.038*
H7C0.94210.02600.11020.038*
C80.5613 (2)0.23358 (15)0.02873 (12)0.0250 (3)
H8A0.43870.21140.06020.037*
H8B0.65320.15020.01130.037*
H8C0.52430.31050.03790.037*
C90.0948 (2)0.60606 (14)0.16368 (11)0.0211 (3)
H9A0.02750.57780.11380.025*
C100.0221 (2)0.71595 (14)0.21327 (11)0.0205 (3)
C110.0644 (2)0.76348 (14)0.28849 (11)0.0199 (3)
H11A0.20470.72470.30770.024*
C120.0528 (2)0.86614 (14)0.33475 (11)0.0206 (3)
C130.2607 (2)0.92734 (14)0.30389 (11)0.0208 (3)
C140.3465 (2)0.88063 (15)0.22958 (11)0.0228 (3)
H14A0.48620.92070.20910.027*
C150.2279 (2)0.77488 (15)0.18495 (11)0.0231 (3)
H15A0.28800.74260.13470.028*
C160.2148 (2)0.84763 (16)0.45449 (12)0.0271 (3)
H16A0.24240.88980.51080.041*
H16B0.31110.85800.39630.041*
H16C0.22900.74750.48640.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01519 (18)0.02052 (19)0.02471 (19)0.00053 (13)0.00105 (12)0.00933 (13)
N10.0198 (6)0.0202 (6)0.0223 (5)0.0022 (5)0.0005 (4)0.0073 (4)
N20.0189 (6)0.0207 (6)0.0236 (6)0.0022 (4)0.0011 (4)0.0073 (4)
N30.0190 (6)0.0203 (6)0.0219 (5)0.0023 (5)0.0000 (4)0.0068 (4)
O10.0151 (5)0.0248 (5)0.0263 (5)0.0009 (4)0.0017 (4)0.0079 (4)
O20.0169 (5)0.0255 (5)0.0330 (5)0.0010 (4)0.0016 (4)0.0095 (4)
O30.0170 (5)0.0275 (5)0.0296 (5)0.0007 (4)0.0047 (4)0.0131 (4)
O40.0167 (5)0.0278 (5)0.0314 (5)0.0023 (4)0.0019 (4)0.0135 (4)
C10.0195 (7)0.0189 (6)0.0201 (6)0.0043 (5)0.0003 (5)0.0052 (5)
C20.0188 (6)0.0182 (6)0.0226 (6)0.0026 (5)0.0023 (5)0.0030 (5)
C30.0160 (6)0.0184 (6)0.0247 (6)0.0005 (5)0.0024 (5)0.0053 (5)
C40.0167 (6)0.0191 (6)0.0239 (6)0.0030 (5)0.0017 (5)0.0027 (5)
C50.0150 (6)0.0254 (7)0.0250 (7)0.0018 (5)0.0026 (5)0.0049 (5)
C60.0235 (7)0.0273 (7)0.0301 (7)0.0027 (6)0.0025 (6)0.0080 (6)
C70.0248 (7)0.0225 (7)0.0268 (7)0.0009 (6)0.0038 (6)0.0087 (5)
C80.0240 (7)0.0251 (7)0.0264 (7)0.0039 (6)0.0019 (6)0.0110 (6)
C90.0200 (7)0.0211 (6)0.0213 (6)0.0048 (5)0.0014 (5)0.0049 (5)
C100.0181 (7)0.0196 (6)0.0210 (6)0.0028 (5)0.0003 (5)0.0033 (5)
C110.0143 (6)0.0200 (6)0.0219 (6)0.0019 (5)0.0008 (5)0.0027 (5)
C120.0192 (7)0.0213 (6)0.0197 (6)0.0049 (5)0.0004 (5)0.0037 (5)
C130.0176 (6)0.0201 (6)0.0215 (6)0.0019 (5)0.0017 (5)0.0041 (5)
C140.0146 (6)0.0251 (7)0.0255 (7)0.0012 (5)0.0022 (5)0.0055 (5)
C150.0195 (7)0.0248 (7)0.0244 (7)0.0038 (5)0.0025 (5)0.0075 (5)
C160.0189 (7)0.0310 (7)0.0303 (7)0.0010 (6)0.0062 (6)0.0121 (6)
Geometric parameters (Å, º) top
S1—C11.7507 (14)C6—H6B0.9800
S1—C31.7626 (14)C6—H6C0.9800
N1—C21.3773 (18)C7—H7A0.9800
N1—C11.3795 (18)C7—H7B0.9800
N1—C81.4599 (17)C7—H7C0.9800
N2—C11.2958 (18)C8—H8A0.9800
N2—N31.3982 (16)C8—H8B0.9800
N3—C91.2847 (18)C8—H8C0.9800
O1—C41.3315 (17)C9—C101.4592 (19)
O1—C51.4624 (16)C9—H9A0.9500
O2—C41.2247 (17)C10—C151.3951 (19)
O3—C121.3601 (17)C10—C111.4039 (19)
O3—C161.4307 (16)C11—C121.3808 (19)
O4—C131.3551 (17)C11—H11A0.9500
O4—H4O0.8400C12—C131.4159 (19)
C2—C31.359 (2)C13—C141.387 (2)
C2—C71.4941 (19)C14—C151.394 (2)
C3—C41.457 (2)C14—H14A0.9500
C5—C61.498 (2)C15—H15A0.9500
C5—H5A0.9900C16—H16A0.9800
C5—H5B0.9900C16—H16B0.9800
C6—H6A0.9800C16—H16C0.9800
C1—S1—C389.88 (6)C2—C7—H7C109.5
C2—N1—C1114.90 (11)H7A—C7—H7C109.5
C2—N1—C8125.69 (12)H7B—C7—H7C109.5
C1—N1—C8119.40 (11)N1—C8—H8A109.5
C1—N2—N3110.82 (11)N1—C8—H8B109.5
C9—N3—N2112.08 (11)H8A—C8—H8B109.5
C4—O1—C5116.48 (11)N1—C8—H8C109.5
C12—O3—C16116.76 (11)H8A—C8—H8C109.5
C13—O4—H4O109.5H8B—C8—H8C109.5
N2—C1—N1121.36 (12)N3—C9—C10122.79 (13)
N2—C1—S1128.22 (11)N3—C9—H9A118.6
N1—C1—S1110.42 (10)C10—C9—H9A118.6
C3—C2—N1112.65 (12)C15—C10—C11119.09 (13)
C3—C2—C7127.97 (13)C15—C10—C9118.38 (12)
N1—C2—C7119.37 (12)C11—C10—C9122.53 (12)
C2—C3—C4127.31 (12)C12—C11—C10120.55 (12)
C2—C3—S1112.14 (10)C12—C11—H11A119.7
C4—C3—S1120.50 (11)C10—C11—H11A119.7
O2—C4—O1123.89 (13)O3—C12—C11125.70 (13)
O2—C4—C3124.66 (13)O3—C12—C13114.35 (12)
O1—C4—C3111.45 (11)C11—C12—C13119.95 (13)
O1—C5—C6107.59 (11)O4—C13—C14123.43 (13)
O1—C5—H5A110.2O4—C13—C12116.96 (12)
C6—C5—H5A110.2C14—C13—C12119.61 (13)
O1—C5—H5B110.2C13—C14—C15120.03 (13)
C6—C5—H5B110.2C13—C14—H14A120.0
H5A—C5—H5B108.5C15—C14—H14A120.0
C5—C6—H6A109.5C14—C15—C10120.74 (13)
C5—C6—H6B109.5C14—C15—H15A119.6
H6A—C6—H6B109.5C10—C15—H15A119.6
C5—C6—H6C109.5O3—C16—H16A109.5
H6A—C6—H6C109.5O3—C16—H16B109.5
H6B—C6—H6C109.5H16A—C16—H16B109.5
C2—C7—H7A109.5O3—C16—H16C109.5
C2—C7—H7B109.5H16A—C16—H16C109.5
H7A—C7—H7B109.5H16B—C16—H16C109.5
C1—N2—N3—C9177.01 (11)S1—C3—C4—O2179.55 (11)
N3—N2—C1—N1179.73 (11)C2—C3—C4—O1177.28 (13)
N3—N2—C1—S10.40 (17)S1—C3—C4—O10.06 (16)
C2—N1—C1—N2179.91 (12)C4—O1—C5—C6171.31 (11)
C8—N1—C1—N21.54 (19)N2—N3—C9—C10179.74 (11)
C2—N1—C1—S10.65 (15)N3—C9—C10—C15179.88 (13)
C8—N1—C1—S1177.90 (10)N3—C9—C10—C110.5 (2)
C3—S1—C1—N2179.35 (13)C15—C10—C11—C120.6 (2)
C3—S1—C1—N10.04 (10)C9—C10—C11—C12178.93 (12)
C1—N1—C2—C31.22 (17)C16—O3—C12—C117.2 (2)
C8—N1—C2—C3177.22 (12)C16—O3—C12—C13172.68 (12)
C1—N1—C2—C7178.01 (11)C10—C11—C12—O3177.97 (12)
C8—N1—C2—C73.6 (2)C10—C11—C12—C131.9 (2)
N1—C2—C3—C4176.20 (13)O3—C12—C13—O41.00 (18)
C7—C2—C3—C44.7 (2)C11—C12—C13—O4179.11 (12)
N1—C2—C3—S11.21 (15)O3—C12—C13—C14178.01 (12)
C7—C2—C3—S1177.93 (11)C11—C12—C13—C141.9 (2)
C1—S1—C3—C20.71 (11)O4—C13—C14—C15179.53 (13)
C1—S1—C3—C4176.90 (11)C12—C13—C14—C150.6 (2)
C5—O1—C4—O21.04 (19)C13—C14—C15—C100.7 (2)
C5—O1—C4—C3179.34 (11)C11—C10—C15—C140.7 (2)
C2—C3—C4—O22.3 (2)C9—C10—C15—C14179.74 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.982.283.0111 (19)130
O4—H4O···O2i0.841.852.6878 (14)176
C16—H16A···O4ii0.982.413.3824 (18)171
C8—H8C···N3iii0.982.623.3986 (19)137
C6—H6B···Cg1iv0.982.963.6414 (16)128
C7—H7C···Cg1v0.982.623.4762 (16)146
Symmetry codes: (i) x2, y+1, z; (ii) x, y+2, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H19N3O4S
Mr349.40
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.8957 (3), 10.2716 (5), 12.7297 (6)
α, β, γ (°)74.843 (4), 87.579 (4), 73.304 (4)
V3)833.06 (7)
Z2
Radiation typeCu Kα
µ (mm1)1.96
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Agilent, 2011)
Tmin, Tmax0.508, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
5272, 3316, 3254
Rint0.016
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.02
No. of reflections3316
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.982.283.0111 (19)130
O4—H4O···O2i0.841.852.6878 (14)176
C16—H16A···O4ii0.982.413.3824 (18)171
C8—H8C···N3iii0.982.623.3986 (19)137
C6—H6B···Cg1iv0.982.963.6414 (16)128
C7—H7C···Cg1v0.982.623.4762 (16)146
Symmetry codes: (i) x2, y+1, z; (ii) x, y+2, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y1, z.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChapleo, C. B., Myers, M., Myers, P. L., Saville, J. F., Smith, A. C. B., Stilling, M. R., Tulloch, I. F., Walter, D. S. & Welbourne, A. P. (1986). J. Med. Chem. 29, 2273–2280.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDesai, K. & Baxi, A. J. (1992). Indian J. Pharm. Sci. 54, 183–188.  CAS Google Scholar
First citationEr, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). Arkivoc, II, 149–167.  CrossRef Google Scholar
First citationHanna, M. A., Girges, M. M., Rasala, D. & Gawinecki, R. (1995). Arzneim. Forsch. Drug. Res. 45, 1074–1078.  CAS Google Scholar
First citationImhof, W. & Wunderle, J. (2012). Acta Cryst. E68, o2741.  CSD CrossRef IUCr Journals Google Scholar
First citationMazzone, G., Pignatello, R., Mazzone, S., Panico, A., Penisi, G., Castana, R. & Mazzone, P. (1993). Il Farmaco, 48, 1207–1224.  CAS PubMed Web of Science Google Scholar
First citationMiyamoto, K., Koshiura, R., Mori, M., Yokoi, H., Mori, C., Hasegawa, T. & Takatori, K. (1985). Chem. Pharm. Bull. 33, 5126–5129.  CrossRef CAS PubMed Google Scholar
First citationMullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090–1099.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOh, C.-H., Cho, H.-W., Baek, D. & Cho, J.-H. (2002). Eur. J. Med. Chem. 37, 743–754.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRandell, N. M., Thompson, L. K. & Dawe, L. N. (2012). Acta Cryst. E68, o2711.  CSD CrossRef IUCr Journals Google Scholar
First citationSancak, K., Ünver, Y. & Er, M. (2007). Turk. J. Chem. 31, 125–134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShucla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 168–171.  Google Scholar
First citationTurner, S., Myers, M., Gadie, B., Hale, S. A., Horsley, A., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. & Berridge, T. L. (1988). J. Med. Chem. 31, 906–913.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3213-o3214
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds