metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3-nitro­benzene-1,2-di­carboxyl­ato)-κ4O1,O2:O1,O1′;κ4O1,O1′:O1,O2-bis­­[tri­aqua­(6-carb­­oxy-2-nitro­benzoato-κ2O1,O6)neodymium(III)] dihydrate

aCollege of Science, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China
*Correspondence e-mail: peizc@nwsuaf.edu.cn, shuaiqi@nwsuaf.edu.cn

(Received 28 September 2012; accepted 12 October 2012; online 20 October 2012)

The title complex, [Nd2(C8H3NO6)2(C8H4NO6)2(H2O)6]·2H2O, consists of dimeric units related by an inversion center. The NdIII atom is nine-coordinated by three O atoms from water mol­ecules and six from carboxyl­ate atoms. The 1,2-dicarboxylate acid molecules are in a single and double deprotonation stage and exhibit two coord­in­ation modes, viz. μ2-(κ4, O1: O2: O2: O3) and μ1-(κ2, O2: O3), which are responsible for the dimeric structure framework. The dimeric structure is then assembled into a three-dimensional supramolecular framework via O—H⋯O hydrogen bonds.

Related literature

For the isotypic La compound, see: Xiong & Qi (2007[Xiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10-m12.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd22(C8H3NO6)2(C8H4NO6)(H2O)6]·2H2O

  • Mr = 1271.08

  • Triclinic, [P \overline 1]

  • a = 8.1460 (7) Å

  • b = 8.8090 (9) Å

  • c = 15.1670 (13) Å

  • α = 100.434 (1)°

  • β = 91.106 (1)°

  • γ = 104.482 (2)°

  • V = 1033.96 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.60 mm−1

  • T = 298 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.781

  • 5316 measured reflections

  • 3618 independent reflections

  • 3196 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 1.03

  • 3618 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O1 2.489 (3)
Nd1—O3 2.447 (3)
Nd1—O7 2.561 (3)
Nd1—O8 2.564 (3)
Nd1—O8i 2.486 (3)
Nd1—O10i 2.431 (3)
Nd1—O13 2.554 (3)
Nd1—O14 2.487 (3)
Nd1—O15 2.398 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O16ii 0.82 1.79 2.588 (4) 163
O13—H13C⋯O3i 0.85 2.19 3.026 (5) 169
O13—H13D⋯O10ii 0.85 2.12 2.952 (5) 168
O14—H14B⋯O7iii 0.85 1.98 2.750 (5) 150
O14—H14C⋯O4 0.85 2.00 2.782 (4) 152
O15—H15C⋯O9ii 0.85 1.81 2.654 (4) 177
O15—H15D⋯O16ii 0.85 2.02 2.867 (5) 177
O16—H16C⋯O4 0.85 1.92 2.767 (5) 179
O16—H16D⋯O9iv 0.85 1.88 2.730 (5) 179
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report here a neodymium complex based on 3-nitrobenzene-1,2- dicarboxylic acid ligands. X-ray diffraction crystal structure analysis reveals that the complex forms a structure [Nd2(C8H4NO6)2(C8H3NO6)2 (H2O)6].2H2O, consisting of dimeric units related by an inversion center. The compound is isostructural to the corresponding La compound reported by Xiong & Qi (2007).

In the title complex, the central neodymium center is coordinated by nine oxygen atoms (Fig. 1), the coordination geometry of which can be described as distorted tricapped trigonal-prismatic. Six of the nine coordinating oxygens are from the two coordinating H2NPA (3-nitrobenzene-1,2-dicarboxylic acid) ligands and the remaining three from water molecules. 3-Nitrobenzene-1,2-dicarboxylic acid ligands exhibit two coordination modes (Fig. 2), which can be classified as µ2-(κ4, O1: O2: O2: O3) and µ1-(κ2, O2: O3). In one unit of the complex, there are four H2NPA anions. Two (NPA2-) ions are dianionic, so the other (HNPA-) anion is monoprotonated to maintain electroneutrality. Correspondingly, two types of coordination modes of H2NPA ligands exist in the structure.

Related literature top

For the isotypic La compound, see: Xiong & Qi (2007).

Experimental top

A mixture of neodymium chloride hexahydrate (0.03585 g, 0.1 mmol), sodium hydroxide (0.0080 g, 0.2 mmol), 3-nitrobenzene-1,2-dicarboxylic acid (0.0211 g, 0.1 mmol), and CH3OH (20 mL) was placed in a Parr Teflon-lined stainless stell vessel (25 ml), which was sealed and heated at 443.15 K for 4 days. Then the vessel was cooled to 373.15 K at a rate of 5 K h-1 and subsequently slowly to room temperature. Purple, block single crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å for aryl type H-atoms, respectively with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O). Positive and negative residual densities close to oxygen positions are most probably due to different orientational conformations of water molecules or hydroxyl groups. The most likely orientations were retained.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of NdIII atoms; atoms are shown as 30% probability ellipsoids. Symmetry codes: (A) 1 - x, 1 - y, 1 - z;
[Figure 2] Fig. 2. Coordination modes of 3-Nitrobenzene-1,2-dicarboxylic acid ligands in the title complex. Hydrogen atoms are omitted for clarity.
Bis(µ-3-nitrobenzene-1,2-dicarboxylato)- κ4O1,O2:O1,O1'; κ4O1,O1':O1,O2-bis[triaqua(6-carboxy-2- nitrobenzoato-κ2O1,O6)neodymium(III)] dihydrate top
Crystal data top
[Nd2(C8H3NO6)2(C8H4NO6)2(H2O)6]·2H2OZ = 1
Mr = 1271.08F(000) = 626
Triclinic, P1Dx = 2.041 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1460 (7) ÅCell parameters from 2861 reflections
b = 8.8090 (9) Åθ = 2.6–27.9°
c = 15.1670 (13) ŵ = 2.60 mm1
α = 100.434 (1)°T = 298 K
β = 91.106 (1)°Block, purple
γ = 104.482 (2)°0.16 × 0.14 × 0.10 mm
V = 1033.96 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3618 independent reflections
Radiation source: fine-focus sealed tube3196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 98
Tmin = 0.681, Tmax = 0.781k = 1010
5316 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
3618 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Nd2(C8H3NO6)2(C8H4NO6)2(H2O)6]·2H2Oγ = 104.482 (2)°
Mr = 1271.08V = 1033.96 (16) Å3
Triclinic, P1Z = 1
a = 8.1460 (7) ÅMo Kα radiation
b = 8.8090 (9) ŵ = 2.60 mm1
c = 15.1670 (13) ÅT = 298 K
α = 100.434 (1)°0.16 × 0.14 × 0.10 mm
β = 91.106 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3618 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3196 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.781Rint = 0.030
5316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Δρmax = 1.51 e Å3
3618 reflectionsΔρmin = 0.88 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.34954 (3)0.61211 (3)0.432565 (17)0.02109 (10)
N10.6299 (5)0.3586 (5)0.0945 (3)0.0357 (11)
N21.0429 (5)0.8971 (5)0.8325 (3)0.0338 (10)
O10.2534 (4)0.6797 (4)0.2912 (2)0.0323 (8)
O20.0666 (4)0.6809 (4)0.1849 (2)0.0387 (9)
H20.03990.74390.22530.058*
O30.5209 (4)0.5333 (4)0.3102 (2)0.0239 (7)
O40.6217 (4)0.7219 (4)0.2293 (2)0.0317 (8)
O50.7245 (5)0.4265 (5)0.1614 (3)0.0525 (11)
O60.6688 (5)0.2711 (5)0.0317 (3)0.0594 (12)
O70.4497 (4)0.8304 (4)0.5729 (2)0.0313 (8)
O80.5879 (4)0.6447 (3)0.5528 (2)0.0222 (7)
O91.0001 (4)0.8529 (4)0.6082 (2)0.0354 (9)
O100.8932 (4)0.6062 (4)0.6320 (2)0.0282 (8)
O111.1186 (5)0.8219 (6)0.7825 (3)0.0686 (15)
O121.1035 (5)0.9742 (6)0.9051 (3)0.0666 (14)
O130.2084 (4)0.5262 (4)0.5708 (2)0.0362 (9)
H13C0.27520.51180.61040.043*
H13D0.12270.54820.59600.043*
O140.5560 (4)0.8539 (4)0.4017 (2)0.0363 (9)
H14B0.52110.93710.41850.044*
H14C0.57320.84440.34610.044*
O150.1355 (4)0.7563 (4)0.4572 (2)0.0374 (9)
H15C0.09460.78600.50660.045*
H15D0.07980.77700.41500.045*
O160.9404 (4)0.8298 (4)0.3189 (2)0.0382 (9)
H16C0.84230.79750.29150.046*
H16D0.95770.92850.34140.046*
C10.1920 (6)0.6321 (6)0.2148 (3)0.0278 (11)
C20.5315 (6)0.5899 (5)0.2390 (3)0.0249 (11)
C30.2498 (6)0.5176 (6)0.1470 (3)0.0264 (11)
C40.4139 (6)0.4937 (5)0.1582 (3)0.0244 (11)
C50.4606 (6)0.3880 (5)0.0893 (3)0.0292 (11)
C60.3539 (7)0.3078 (6)0.0136 (4)0.0395 (14)
H60.38990.23860.03120.047*
C70.1944 (7)0.3323 (6)0.0059 (4)0.0397 (14)
H70.12170.27950.04440.048*
C80.1426 (7)0.4342 (6)0.0721 (3)0.0334 (12)
H80.03350.44800.06690.040*
C90.5563 (6)0.7666 (5)0.6009 (3)0.0225 (10)
C100.9095 (6)0.7554 (6)0.6468 (3)0.0258 (11)
C110.6390 (6)0.8337 (5)0.6931 (3)0.0221 (10)
C120.8033 (6)0.8239 (5)0.7179 (3)0.0208 (10)
C130.8675 (6)0.8954 (5)0.8048 (3)0.0244 (11)
C140.7784 (6)0.9698 (6)0.8671 (3)0.0314 (12)
H140.82641.01510.92500.038*
C150.6166 (7)0.9762 (6)0.8425 (4)0.0354 (13)
H150.55391.02540.88380.042*
C160.5485 (6)0.9089 (5)0.7558 (3)0.0271 (11)
H160.43990.91410.73910.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02379 (15)0.02005 (14)0.01938 (16)0.00804 (10)0.00171 (10)0.00071 (11)
N10.037 (3)0.030 (2)0.040 (3)0.009 (2)0.014 (2)0.002 (2)
N20.033 (3)0.031 (2)0.032 (3)0.005 (2)0.009 (2)0.002 (2)
O10.038 (2)0.045 (2)0.0184 (19)0.0203 (17)0.0029 (15)0.0049 (17)
O20.038 (2)0.046 (2)0.034 (2)0.0232 (18)0.0095 (17)0.0026 (18)
O30.0257 (18)0.0293 (17)0.0194 (18)0.0123 (14)0.0027 (14)0.0043 (15)
O40.0310 (19)0.0286 (18)0.032 (2)0.0014 (15)0.0011 (15)0.0071 (16)
O50.040 (2)0.063 (3)0.053 (3)0.025 (2)0.002 (2)0.009 (2)
O60.060 (3)0.069 (3)0.048 (3)0.031 (2)0.017 (2)0.013 (2)
O70.037 (2)0.0268 (17)0.031 (2)0.0167 (15)0.0086 (16)0.0019 (16)
O80.0302 (18)0.0204 (16)0.0161 (17)0.0115 (14)0.0017 (13)0.0032 (14)
O90.039 (2)0.0296 (18)0.037 (2)0.0069 (16)0.0173 (17)0.0048 (17)
O100.0263 (18)0.0225 (17)0.033 (2)0.0081 (14)0.0031 (15)0.0031 (15)
O110.045 (3)0.101 (4)0.056 (3)0.039 (3)0.016 (2)0.020 (3)
O120.056 (3)0.078 (3)0.052 (3)0.025 (2)0.032 (2)0.029 (3)
O130.031 (2)0.050 (2)0.034 (2)0.0165 (17)0.0089 (16)0.0136 (18)
O140.047 (2)0.0233 (17)0.039 (2)0.0116 (16)0.0102 (17)0.0047 (16)
O150.047 (2)0.051 (2)0.024 (2)0.0328 (19)0.0043 (16)0.0055 (18)
O160.042 (2)0.0252 (18)0.046 (2)0.0133 (16)0.0067 (18)0.0017 (17)
C10.027 (3)0.029 (3)0.028 (3)0.008 (2)0.002 (2)0.009 (2)
C20.024 (3)0.028 (3)0.023 (3)0.013 (2)0.003 (2)0.003 (2)
C30.028 (3)0.030 (3)0.023 (3)0.007 (2)0.000 (2)0.009 (2)
C40.027 (3)0.024 (2)0.022 (3)0.005 (2)0.003 (2)0.006 (2)
C50.039 (3)0.024 (2)0.026 (3)0.008 (2)0.005 (2)0.009 (2)
C60.061 (4)0.030 (3)0.024 (3)0.008 (3)0.003 (3)0.001 (2)
C70.049 (4)0.037 (3)0.027 (3)0.006 (3)0.015 (3)0.000 (3)
C80.041 (3)0.030 (3)0.029 (3)0.011 (2)0.011 (2)0.003 (2)
C90.022 (2)0.022 (2)0.021 (3)0.002 (2)0.001 (2)0.002 (2)
C100.022 (3)0.031 (3)0.021 (3)0.010 (2)0.005 (2)0.005 (2)
C110.026 (3)0.020 (2)0.020 (3)0.0053 (19)0.002 (2)0.002 (2)
C120.024 (2)0.017 (2)0.019 (3)0.0029 (19)0.0009 (19)0.001 (2)
C130.030 (3)0.019 (2)0.023 (3)0.006 (2)0.001 (2)0.001 (2)
C140.041 (3)0.030 (3)0.017 (3)0.004 (2)0.001 (2)0.002 (2)
C150.047 (3)0.029 (3)0.028 (3)0.013 (2)0.010 (2)0.004 (2)
C160.026 (3)0.026 (2)0.029 (3)0.011 (2)0.004 (2)0.000 (2)
Geometric parameters (Å, º) top
Nd1—O12.489 (3)O14—H14B0.8500
Nd1—O32.447 (3)O14—H14C0.8500
Nd1—O72.561 (3)O15—H15C0.8500
Nd1—O82.564 (3)O15—H15D0.8500
Nd1—O8i2.486 (3)O16—H16C0.8500
Nd1—O10i2.431 (3)O16—H16D0.8499
Nd1—O132.554 (3)C1—C31.475 (7)
Nd1—O142.487 (3)C2—C41.520 (6)
Nd1—O152.398 (3)C3—C81.390 (6)
N1—O61.212 (5)C3—C41.416 (6)
N1—O51.225 (6)C4—C51.394 (7)
N1—C51.469 (6)C5—C61.391 (7)
N2—O111.197 (6)C6—C71.376 (8)
N2—O121.208 (5)C6—H60.9300
N2—C131.477 (6)C7—C81.368 (7)
O1—C11.211 (6)C7—H70.9300
O2—C11.306 (6)C8—H80.9300
O2—H20.8200C9—C111.491 (6)
O3—C21.265 (6)C10—C121.528 (6)
O4—C21.246 (5)C11—C161.389 (6)
O7—C91.252 (5)C11—C121.411 (6)
O8—C91.270 (5)C12—C131.384 (6)
O8—Nd1i2.486 (3)C13—C141.375 (7)
O9—C101.228 (6)C14—C151.381 (7)
O10—C101.265 (5)C14—H140.9300
O10—Nd1i2.431 (3)C15—C161.383 (7)
O13—H13C0.8500C15—H150.9300
O13—H13D0.8500C16—H160.9300
O15—Nd1—O10i82.46 (11)Nd1—O14—H14C111.0
O15—Nd1—O3137.86 (11)H14B—O14—H14C109.2
O10i—Nd1—O390.90 (11)Nd1—O15—H15C127.9
O15—Nd1—O8i142.35 (11)Nd1—O15—H15D123.5
O10i—Nd1—O8i71.22 (10)H15C—O15—H15D108.3
O3—Nd1—O8i70.52 (10)H16C—O16—H16D108.4
O15—Nd1—O1490.69 (12)O1—C1—O2121.7 (5)
O10i—Nd1—O14143.71 (12)O1—C1—C3124.5 (4)
O3—Nd1—O1470.66 (11)O2—C1—C3113.8 (4)
O8i—Nd1—O14126.35 (11)O4—C2—O3126.7 (4)
O15—Nd1—O168.22 (11)O4—C2—C4115.8 (4)
O10i—Nd1—O173.83 (11)O3—C2—C4117.3 (4)
O3—Nd1—O169.96 (10)C8—C3—C4120.4 (5)
O8i—Nd1—O1125.78 (10)C8—C3—C1119.6 (4)
O14—Nd1—O170.56 (12)C4—C3—C1120.1 (4)
O15—Nd1—O1375.73 (11)C5—C4—C3116.2 (4)
O10i—Nd1—O1376.95 (11)C5—C4—C2124.1 (4)
O3—Nd1—O13143.02 (11)C3—C4—C2119.6 (4)
O8i—Nd1—O1372.49 (10)C6—C5—C4123.0 (5)
O14—Nd1—O13135.72 (11)C6—C5—N1117.1 (5)
O1—Nd1—O13135.80 (11)C4—C5—N1119.9 (4)
O15—Nd1—O772.57 (11)C7—C6—C5119.0 (5)
O10i—Nd1—O7141.54 (11)C7—C6—H6120.5
O3—Nd1—O7127.18 (11)C5—C6—H6120.5
O8i—Nd1—O7112.88 (10)C8—C7—C6120.1 (5)
O14—Nd1—O766.79 (11)C8—C7—H7120.0
O1—Nd1—O7120.33 (11)C6—C7—H7120.0
O13—Nd1—O768.93 (11)C7—C8—C3121.3 (5)
O15—Nd1—O8121.59 (10)C7—C8—H8119.4
O10i—Nd1—O8133.76 (10)C3—C8—H8119.4
O3—Nd1—O892.65 (10)O7—C9—O8120.4 (4)
O8i—Nd1—O866.76 (11)O7—C9—C11118.2 (4)
O14—Nd1—O879.62 (11)O8—C9—C11121.4 (4)
O1—Nd1—O8149.00 (11)O9—C10—O10126.6 (4)
O13—Nd1—O872.89 (11)O9—C10—C12115.4 (4)
O7—Nd1—O850.55 (9)O10—C10—C12117.9 (4)
O6—N1—O5124.0 (5)C16—C11—C12119.8 (4)
O6—N1—C5118.1 (5)C16—C11—C9117.6 (4)
O5—N1—C5117.9 (4)C12—C11—C9122.6 (4)
O11—N2—O12122.9 (5)C13—C12—C11116.8 (4)
O11—N2—C13118.9 (4)C13—C12—C10122.9 (4)
O12—N2—C13118.2 (4)C11—C12—C10119.8 (4)
C1—O1—Nd1147.6 (3)C14—C13—C12123.6 (4)
C1—O2—H2109.5C14—C13—N2117.4 (4)
C2—O3—Nd1122.9 (3)C12—C13—N2119.0 (4)
C9—O7—Nd194.6 (3)C13—C14—C15119.0 (5)
C9—O8—Nd1i140.4 (3)C13—C14—H14120.5
C9—O8—Nd194.0 (3)C15—C14—H14120.5
Nd1i—O8—Nd1113.24 (11)C14—C15—C16119.4 (5)
C10—O10—Nd1i129.9 (3)C14—C15—H15120.3
Nd1—O13—H13C115.0C16—C15—H15120.3
Nd1—O13—H13D130.1C15—C16—C11121.4 (5)
H13C—O13—H13D108.7C15—C16—H16119.3
Nd1—O14—H14B111.1C11—C16—H16119.3
O15—Nd1—O1—C1122.1 (6)O4—C2—C4—C588.0 (6)
O10i—Nd1—O1—C133.8 (6)O3—C2—C4—C596.1 (6)
O3—Nd1—O1—C163.2 (6)O4—C2—C4—C387.7 (5)
O8i—Nd1—O1—C117.7 (6)O3—C2—C4—C388.2 (5)
O14—Nd1—O1—C1139.0 (6)C3—C4—C5—C60.6 (7)
O13—Nd1—O1—C184.4 (6)C2—C4—C5—C6176.4 (5)
O7—Nd1—O1—C1174.6 (6)C3—C4—C5—N1178.8 (4)
O8—Nd1—O1—C1122.5 (6)C2—C4—C5—N13.0 (7)
O15—Nd1—O3—C212.2 (4)O6—N1—C5—C62.4 (7)
O10i—Nd1—O3—C291.9 (3)O5—N1—C5—C6179.0 (5)
O8i—Nd1—O3—C2161.6 (3)O6—N1—C5—C4177.0 (5)
O14—Nd1—O3—C256.2 (3)O5—N1—C5—C41.6 (7)
O1—Nd1—O3—C219.5 (3)C4—C5—C6—C70.4 (8)
O13—Nd1—O3—C2161.1 (3)N1—C5—C6—C7179.8 (5)
O7—Nd1—O3—C294.0 (3)C5—C6—C7—C80.0 (8)
O8—Nd1—O3—C2134.2 (3)C6—C7—C8—C31.5 (8)
O15—Nd1—O7—C9161.9 (3)C4—C3—C8—C72.5 (8)
O10i—Nd1—O7—C9109.9 (3)C1—C3—C8—C7177.1 (5)
O3—Nd1—O7—C960.6 (3)Nd1—O7—C9—O87.1 (4)
O8i—Nd1—O7—C921.7 (3)Nd1—O7—C9—C11170.4 (3)
O14—Nd1—O7—C999.6 (3)Nd1i—O8—C9—O7141.9 (4)
O1—Nd1—O7—C9147.5 (3)Nd1—O8—C9—O77.1 (4)
O13—Nd1—O7—C980.8 (3)Nd1i—O8—C9—C1135.6 (7)
O8—Nd1—O7—C93.9 (2)Nd1—O8—C9—C11170.4 (4)
O15—Nd1—O8—C912.1 (3)Nd1i—O10—C10—O9111.5 (5)
O10i—Nd1—O8—C9124.2 (3)Nd1i—O10—C10—C1266.6 (5)
O3—Nd1—O8—C9142.1 (3)O7—C9—C11—C1627.8 (6)
O8i—Nd1—O8—C9150.5 (3)O8—C9—C11—C16149.7 (4)
O14—Nd1—O8—C972.3 (3)O7—C9—C11—C12151.8 (4)
O1—Nd1—O8—C988.1 (3)O8—C9—C11—C1230.7 (7)
O13—Nd1—O8—C972.6 (3)C16—C11—C12—C131.6 (6)
O7—Nd1—O8—C93.9 (2)C9—C11—C12—C13178.0 (4)
O15—Nd1—O8—Nd1i138.38 (13)C16—C11—C12—C10174.2 (4)
O10i—Nd1—O8—Nd1i26.3 (2)C9—C11—C12—C105.4 (7)
O3—Nd1—O8—Nd1i67.47 (13)O9—C10—C12—C1382.4 (6)
O8i—Nd1—O8—Nd1i0.0O10—C10—C12—C1399.3 (5)
O14—Nd1—O8—Nd1i137.26 (14)O9—C10—C12—C1189.8 (5)
O1—Nd1—O8—Nd1i121.39 (18)O10—C10—C12—C1188.6 (5)
O13—Nd1—O8—Nd1i77.86 (13)C11—C12—C13—C141.8 (7)
O7—Nd1—O8—Nd1i154.34 (19)C10—C12—C13—C14174.1 (5)
Nd1—O1—C1—O2131.8 (5)C11—C12—C13—N2176.4 (4)
Nd1—O1—C1—C348.8 (9)C10—C12—C13—N24.0 (7)
Nd1—O3—C2—O479.5 (5)O11—N2—C13—C14173.7 (5)
Nd1—O3—C2—C495.9 (4)O12—N2—C13—C146.0 (7)
O1—C1—C3—C8160.5 (5)O11—N2—C13—C128.0 (7)
O2—C1—C3—C820.1 (7)O12—N2—C13—C12172.3 (5)
O1—C1—C3—C419.9 (7)C12—C13—C14—C150.8 (8)
O2—C1—C3—C4159.5 (4)N2—C13—C14—C15177.4 (4)
C8—C3—C4—C52.0 (7)C13—C14—C15—C160.4 (8)
C1—C3—C4—C5177.6 (4)C14—C15—C16—C110.5 (8)
C8—C3—C4—C2178.0 (4)C12—C11—C16—C150.5 (7)
C1—C3—C4—C21.6 (7)C9—C11—C16—C15179.1 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O16ii0.821.792.588 (4)163
O13—H13C···O3i0.852.193.026 (5)169
O13—H13D···O10ii0.852.122.952 (5)168
O14—H14B···O7iii0.851.982.750 (5)150
O14—H14C···O40.852.002.782 (4)152
O15—H15C···O9ii0.851.812.654 (4)177
O15—H15D···O16ii0.852.022.867 (5)177
O16—H16C···O40.851.922.767 (5)179
O16—H16D···O9iv0.851.882.730 (5)179
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Nd2(C8H3NO6)2(C8H4NO6)2(H2O)6]·2H2O
Mr1271.08
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1460 (7), 8.8090 (9), 15.1670 (13)
α, β, γ (°)100.434 (1), 91.106 (1), 104.482 (2)
V3)1033.96 (16)
Z1
Radiation typeMo Kα
µ (mm1)2.60
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.681, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
5316, 3618, 3196
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.03
No. of reflections3618
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.51, 0.88

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Nd1—O12.489 (3)Nd1—O10i2.431 (3)
Nd1—O32.447 (3)Nd1—O132.554 (3)
Nd1—O72.561 (3)Nd1—O142.487 (3)
Nd1—O82.564 (3)Nd1—O152.398 (3)
Nd1—O8i2.486 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O16ii0.8201.7922.588 (4)163.03
O13—H13C···O3i0.8502.1893.026 (5)168.45
O13—H13D···O10ii0.8502.1152.952 (5)168.24
O14—H14B···O7iii0.8501.9812.750 (5)149.89
O14—H14C···O40.8502.0012.782 (4)152.21
O15—H15C···O9ii0.8501.8052.654 (4)177.03
O15—H15D···O16ii0.8502.0182.867 (5)177.39
O16—H16C···O40.8501.9172.767 (5)179.19
O16—H16D···O9iv0.8501.8802.730 (5)179.00
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21103140) and the PhD Programs Foundation of the Ministry of Education of China (No. 20110204120037)

References

First citationBruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10–m12.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds