metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ2-Oxalato-bis­­[triphen­yl(thio­urea-κS)tin(IV)]

aLaboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh, Anta Diop Dakar Senegal, and bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: yayasow81@yahoo.fr

(Received 15 July 2012; accepted 26 September 2012; online 6 October 2012)

The asymmetric unit of the binuclear title compound, [Sn2(C2O4)(C6H5)6(CH4N2S)2], consists of one half of the organotin(IV) mol­ecule. The remainder is generated by a twofold rotation axis passing through the mid-point of the oxalate C—C bond. The SnIV atom exhibits a distorted trigonal–bipyramidal coordination environment with the phenyl groups in equatorial positions and the thio­urea and the monodentately bridging oxalate anion in axial positions. The mol­ecules are linked through N—H⋯O hydrogen bonds involving the amino group of the thio­urea ligand and the uncoordinating oxalate O atoms, forming layers parallel to (001). Weak C—H⋯O inter­actions are also present.

Related literature

For background to organotin(IV) chemistry, see: Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Gielen et al. (1995[Gielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251-257.]). For triphenyl­tin(IV)-containing compounds and their biological activity, see: Kamruddin et al. (1996[Kamruddin, S. K., Chattopadhyaya, T. K., Roy, A. & Tiekink, E. R. T. (1996). Appl. Organomet. Chem. 10, 513-521.]). For related compounds, see: Diallo et al. (2009[Diallo, W., Okio, K. Y. A., Diop, C. A. K., Diop, L., Diop, L. A. & Russo, U. (2009). Main Group. Met. Chem. 32, 93-100.]); Diasse-Sarr et al. (1997[Diasse-Sarr, A., Diop, L., Mahon, M. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223-229.]); Diop et al. (1997[Diop, C. A. K., Lahlou, M., Diop, L., Mahieu, B. & Russo, U. (1997). Main Group Met. Chem. 20, 681-686.], 1999[Diop, C. A. K., Diop, L. & Russo, U. (1999). Main Group. Met. Chem. 22, 217-220.], 2003[Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.]); Tiekink (1992[Tiekink, E. R. T. (1992). Main Group Met.Chem. 15, 161-186.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C2O4)(C6H5)6(CH4N2S)2]

  • Mr = 940.24

  • Monoclinic, C 2/c

  • a = 12.9161 (2) Å

  • b = 13.9870 (2) Å

  • c = 21.8215 (3) Å

  • β = 99.238 (1)°

  • V = 3891.09 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 150 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.659, Tmax = 0.747

  • 31403 measured reflections

  • 4472 independent reflections

  • 3665 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.066

  • S = 1.09

  • 4472 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.81 (4) 2.06 (4) 2.824 (3) 157 (4)
N2—H2A⋯O2ii 0.86 (4) 2.14 (4) 2.970 (3) 164 (3)
C6—H6⋯O1 0.95 2.44 2.957 (3) 114
C18—H18⋯O2 0.95 2.39 3.234 (3) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W.Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia,1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Interest in organotin (IV) chemistry remains high because of several applications found in molecules belonging to this family (Evans & Karpel, 1985; Gielen et al., 1995), specifically triphenyltin(IV)-residue containing compounds for which biological activity has been reported (Kamruddin et al., 1996). Our specific interest lies also in the coordinating behavior of oxy-anions to these organometallic centers; we have previously published several crystal structures dealing with such systems (Diallo et al., 2009; Diasse-Sarr et al., 1997; Diop et al., 1997). Moreover, we have reported spectroscopic data (Diop et al., 1999) and the crystal structure of [Sn2(C2O4)(C6H5)6] which exhibits tetrahedrally coordinate tin atoms (Diop et al., 2003). Here we report a study of the interactions between this species and thiourea, which has yielded the title compound, [Sn2(C2O4)(C6H5)6(CH4N2S)2].

The molecule of the title compound has site symmetry 2 with the twofold rotation axcis passing through the mid-point of the central oxalate C—C bond. The Sn(IV) atom is five-coordinate by one oxygen atom of the oxalate anion, a sulfur atom of the thiourea ligand [Sn—O 2.2471 (17), Sn—S 2.6945 (7) Å] which are in apical positions and to three phenyl groups [Sn—C 2.146 (2), 2.139 (2), 2.139 (2) Å] occupying the equatorial positions of the trigonal bipyramid (Fig. 1). The Sn—S bond length is longer than the Sn—S bond length [2.573 (1) Å] found, for example, in {t(C4H9)2Sn[S2CN(CH3)2]2} which contains a trigonal bipyramidally coordinate tin(IV) atom (Tiekink, 1992). The angle S—Sn—O [175.97 (5)°] deviates slightly from linearity. The sum of the C—Sn—C angles (359.96°) indicates a nearly perfectly planar Sn(C6H5)3 residue consistent with the near linearity of the axial substituents. The Sn—O bond length is remarkably long when compared with the Sn—O distance [2.111 (1) Å] in the tetrahedrally coordinate tin(IV) atom in [Sn2(C2O4)(C6H5)6] (Diop et al., 2003). The addition of SC(NH2)2 apparently has caused a change in the coordination from tetrahedral to trigonal-bipyramidal along with a Sn—O bond length increase. The two C—O bond length of the oxalate anion are slightly different because the O atom of the C19—O1 bond [1.269 (3) Å] is also involved in bonding to the Sn(IV) atom, whereas the O atom of the C19—O2 bond [1.243 (3) Å] is involved in hydrogen bonding with the amino group. These interactions lead to the formation of layers parallel to (001) (Figs. 2,3). Weak C—H···O hydrogen bonding is also observed.

Related literature top

For background to organotin(IV) chemistry, see: Evans & Karpel (1985); Gielen et al. (1995). For triphenyltin(IV)-containing compounds and their biological activity, see: Kamruddin et al. (1996). For related compounds, see: Diallo et al. (2009); Diasse-Sarr et al. (1997); Diop et al. (1997, 1999, 2003); Tiekink (1992).

Experimental top

All chemicals were purchased from Aldrich or Merck and used without any further purification. [Sn2(C2O4)(C6H5)6] has been obtained on allowing Sn(C6H5)3OH to react with oxalic acid in a 2:1 ratio in ethanol. A white powder is collected after slow evaporation. When [Sn2(C2O4)(C6H5)6] is mixed with SC(NH2)2 in a 1:2 ratio, both as ethanolic solutions, a colorless solution is obtained which gives crystals of [Sn2(C2O4)(C6H5)6(CH4N2S)2] suitable for X-ray work, after a slow solvent evaporation.

Refinement top

The maximum remaining electron density is 0.79 Å from C3 while the minimum density is in the immediate vicinity of tin. Hydrogen atoms bonded to the N atom have been located in difference Fourier maps and have been freely refined. The other hydrogen atoms have been placed onto calculated position and refined using a riding model, with C—H distances of 0.95 Å and Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).

Figures top
[Figure 1] Fig. 1. The molecule of the title complex showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code a) -x, y, -z + 1/2.]
[Figure 2] Fig. 2. View of the N—H···O hydrogen bonding system (dashed lines) assured by pairs of oxygen atoms of the oxalate and H atoms of thiourea.
[Figure 3] Fig. 3. The packing of the structure showing N—H···O hydrogen bonding interactions as dashed lines
µ2-Oxalato-bis[triphenyl(thiourea-κS)tin(IV)] top
Crystal data top
[Sn2(C2O4)(C6H5)6(CH4N2S)2]F(000) = 1880
Mr = 940.24Dx = 1.605 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 26977 reflections
a = 12.9161 (2) Åθ = 2.9–27.5°
b = 13.9870 (2) ŵ = 1.44 mm1
c = 21.8215 (3) ÅT = 150 K
β = 99.238 (1)°Block, colourless
V = 3891.09 (10) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4472 independent reflections
Radiation source: fine-focus sealed tube3665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
400 1.5 degree images with ϕ and ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1616
Tmin = 0.659, Tmax = 0.747k = 1818
31403 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0248P)2 + 7.4801P]
where P = (Fo2 + 2Fc2)/3
4472 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[Sn2(C2O4)(C6H5)6(CH4N2S)2]V = 3891.09 (10) Å3
Mr = 940.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.9161 (2) ŵ = 1.44 mm1
b = 13.9870 (2) ÅT = 150 K
c = 21.8215 (3) Å0.30 × 0.30 × 0.20 mm
β = 99.238 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4472 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3665 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.747Rint = 0.057
31403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.34 e Å3
4472 reflectionsΔρmin = 1.11 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.165377 (13)0.128741 (12)0.141781 (7)0.01783 (7)
S0.33347 (5)0.18709 (5)0.09290 (3)0.02648 (16)
O10.03210 (13)0.08111 (13)0.18919 (8)0.0223 (4)
O20.09855 (14)0.05868 (13)0.22806 (8)0.0247 (4)
N10.3214 (2)0.34372 (19)0.16116 (13)0.0319 (6)
H1A0.340 (3)0.385 (3)0.1866 (18)0.050 (12)*
H1B0.256 (3)0.351 (2)0.1449 (16)0.040 (10)*
N20.4815 (2)0.2725 (2)0.17068 (13)0.0342 (6)
H2A0.509 (3)0.319 (3)0.1931 (16)0.044 (10)*
H2B0.519 (3)0.228 (3)0.1620 (17)0.050 (12)*
C10.07308 (19)0.25438 (17)0.11628 (11)0.0190 (5)
C20.0815 (2)0.30357 (19)0.06162 (12)0.0245 (6)
H20.13630.28760.03920.029*
C30.0110 (2)0.3755 (2)0.03950 (14)0.0308 (6)
H30.01810.40820.00230.037*
C40.0697 (2)0.3998 (2)0.07159 (14)0.0317 (7)
H40.11870.44800.05600.038*
C50.0780 (2)0.35315 (19)0.12646 (13)0.0266 (6)
H50.13230.37020.14910.032*
C60.0075 (2)0.28136 (19)0.14865 (12)0.0229 (6)
H60.01400.25000.18650.027*
C70.2578 (2)0.11799 (18)0.23207 (12)0.0215 (5)
C80.2292 (2)0.1691 (3)0.28081 (13)0.0410 (8)
H80.17520.21570.27240.049*
C90.2764 (3)0.1547 (4)0.34114 (15)0.0574 (11)
H90.25490.19130.37350.069*
C100.3516 (3)0.0900 (3)0.35449 (15)0.0576 (12)
H100.38300.07970.39640.069*
C110.3848 (4)0.0368 (3)0.3069 (2)0.0700 (14)
H110.43880.00950.31620.084*
C120.3373 (3)0.0529 (2)0.24521 (16)0.0515 (10)
H120.36050.01840.21250.062*
C130.15172 (19)0.01853 (18)0.07300 (11)0.0202 (5)
C140.1501 (2)0.0447 (2)0.01093 (12)0.0298 (6)
H140.15580.11020.00040.036*
C150.1403 (2)0.0245 (2)0.03532 (13)0.0360 (7)
H150.13960.00620.07730.043*
C160.1317 (2)0.1194 (2)0.02054 (14)0.0333 (7)
H160.12490.16650.05230.040*
C170.1328 (2)0.1461 (2)0.04042 (14)0.0343 (7)
H170.12660.21170.05060.041*
C180.1429 (2)0.0774 (2)0.08685 (12)0.0270 (6)
H180.14380.09640.12870.032*
C190.03827 (19)0.01088 (18)0.22640 (11)0.0190 (5)
C200.3813 (2)0.2744 (2)0.14526 (12)0.0260 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02036 (10)0.01769 (10)0.01559 (9)0.00087 (7)0.00337 (6)0.00049 (7)
S0.0272 (3)0.0299 (4)0.0242 (3)0.0054 (3)0.0098 (3)0.0070 (3)
O10.0227 (9)0.0238 (10)0.0211 (9)0.0002 (8)0.0056 (7)0.0060 (8)
O20.0294 (10)0.0208 (10)0.0254 (10)0.0042 (8)0.0093 (8)0.0000 (8)
N10.0311 (15)0.0292 (14)0.0346 (14)0.0033 (12)0.0029 (11)0.0081 (12)
N20.0297 (14)0.0301 (15)0.0427 (16)0.0074 (13)0.0057 (12)0.0087 (13)
C10.0217 (13)0.0153 (12)0.0193 (12)0.0001 (10)0.0011 (10)0.0000 (10)
C20.0277 (14)0.0250 (14)0.0208 (13)0.0001 (11)0.0039 (11)0.0013 (11)
C30.0364 (16)0.0237 (15)0.0309 (15)0.0021 (13)0.0015 (12)0.0069 (12)
C40.0295 (15)0.0247 (15)0.0389 (17)0.0063 (12)0.0006 (12)0.0012 (13)
C50.0222 (14)0.0216 (14)0.0358 (15)0.0014 (11)0.0046 (11)0.0065 (12)
C60.0255 (14)0.0197 (13)0.0240 (13)0.0012 (11)0.0054 (10)0.0013 (11)
C70.0205 (12)0.0232 (14)0.0201 (12)0.0027 (11)0.0015 (10)0.0026 (11)
C80.0254 (15)0.072 (2)0.0251 (15)0.0055 (16)0.0021 (12)0.0117 (15)
C90.0331 (18)0.117 (4)0.0207 (16)0.010 (2)0.0009 (13)0.0065 (19)
C100.069 (3)0.075 (3)0.0207 (16)0.046 (2)0.0189 (16)0.0201 (17)
C110.077 (3)0.037 (2)0.077 (3)0.012 (2)0.045 (2)0.006 (2)
C120.062 (2)0.039 (2)0.044 (2)0.0230 (18)0.0196 (17)0.0121 (16)
C130.0170 (12)0.0228 (14)0.0202 (12)0.0005 (10)0.0017 (10)0.0059 (10)
C140.0387 (17)0.0275 (15)0.0224 (14)0.0005 (13)0.0024 (12)0.0017 (11)
C150.0424 (18)0.046 (2)0.0187 (14)0.0021 (15)0.0026 (12)0.0073 (13)
C160.0330 (16)0.0374 (18)0.0292 (15)0.0032 (14)0.0036 (12)0.0176 (13)
C170.0414 (17)0.0265 (16)0.0350 (16)0.0030 (13)0.0064 (13)0.0084 (13)
C180.0292 (14)0.0288 (15)0.0234 (14)0.0015 (12)0.0051 (11)0.0032 (12)
C190.0217 (13)0.0192 (13)0.0164 (12)0.0032 (11)0.0042 (10)0.0016 (10)
C200.0303 (15)0.0252 (14)0.0241 (14)0.0062 (12)0.0095 (11)0.0012 (11)
Geometric parameters (Å, º) top
Sn—C72.139 (2)C6—H60.9500
Sn—C132.139 (2)C7—C121.368 (4)
Sn—C12.146 (2)C7—C81.381 (4)
Sn—O12.2471 (17)C8—C91.374 (4)
Sn—S2.6945 (7)C8—H80.9500
S—C201.718 (3)C9—C101.325 (6)
O1—C191.269 (3)C9—H90.9500
O2—C191.243 (3)C10—C111.398 (6)
N1—C201.321 (4)C10—H100.9500
N1—H1A0.81 (4)C11—C121.406 (5)
N1—H1B0.86 (4)C11—H110.9500
N2—C201.324 (4)C12—H120.9500
N2—H2A0.85 (4)C13—C181.384 (4)
N2—H2B0.82 (4)C13—C141.400 (4)
C1—C21.396 (3)C14—C151.389 (4)
C1—C61.400 (4)C14—H140.9500
C2—C31.391 (4)C15—C161.375 (4)
C2—H20.9500C15—H150.9500
C3—C41.388 (4)C16—C171.380 (4)
C3—H30.9500C16—H160.9500
C4—C51.383 (4)C17—C181.388 (4)
C4—H40.9500C17—H170.9500
C5—C61.390 (4)C18—H180.9500
C5—H50.9500C19—C19i1.538 (5)
C7—Sn—C13124.52 (10)C9—C8—C7122.0 (3)
C7—Sn—C1120.08 (9)C9—C8—H8119.0
C13—Sn—C1115.36 (9)C7—C8—H8119.0
C7—Sn—O184.87 (8)C10—C9—C8120.5 (4)
C13—Sn—O197.26 (8)C10—C9—H9119.7
C1—Sn—O185.84 (8)C8—C9—H9119.7
C7—Sn—S91.14 (7)C9—C10—C11120.1 (3)
C13—Sn—S85.49 (7)C9—C10—H10120.0
C1—Sn—S95.66 (7)C11—C10—H10120.0
O1—Sn—S175.97 (5)C10—C11—C12119.2 (3)
C20—S—Sn100.29 (9)C10—C11—H11120.4
C19—O1—Sn123.37 (16)C12—C11—H11120.4
C20—N1—H1A126 (3)C7—C12—C11120.3 (3)
C20—N1—H1B123 (2)C7—C12—H12119.8
H1A—N1—H1B111 (3)C11—C12—H12119.8
C20—N2—H2A121 (2)C18—C13—C14118.4 (2)
C20—N2—H2B119 (3)C18—C13—Sn123.08 (19)
H2A—N2—H2B120 (3)C14—C13—Sn118.5 (2)
C2—C1—C6117.7 (2)C15—C14—C13120.4 (3)
C2—C1—Sn120.59 (19)C15—C14—H14119.8
C6—C1—Sn121.12 (18)C13—C14—H14119.8
C3—C2—C1121.1 (3)C16—C15—C14120.2 (3)
C3—C2—H2119.4C16—C15—H15119.9
C1—C2—H2119.4C14—C15—H15119.9
C4—C3—C2120.3 (3)C15—C16—C17120.0 (3)
C4—C3—H3119.8C15—C16—H16120.0
C2—C3—H3119.8C17—C16—H16120.0
C5—C4—C3119.4 (3)C16—C17—C18120.1 (3)
C5—C4—H4120.3C16—C17—H17120.0
C3—C4—H4120.3C18—C17—H17120.0
C4—C5—C6120.3 (3)C13—C18—C17120.9 (3)
C4—C5—H5119.9C13—C18—H18119.5
C6—C5—H5119.9C17—C18—H18119.5
C5—C6—C1121.2 (3)O2—C19—O1126.8 (2)
C5—C6—H6119.4O2—C19—C19i116.57 (17)
C1—C6—H6119.4O1—C19—C19i116.58 (18)
C12—C7—C8117.9 (3)N1—C20—N2118.6 (3)
C12—C7—Sn121.9 (2)N1—C20—S122.2 (2)
C8—C7—Sn119.6 (2)N2—C20—S119.2 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.81 (4)2.06 (4)2.824 (3)157 (4)
N2—H2A···O2iii0.86 (4)2.14 (4)2.970 (3)164 (3)
C6—H6···O10.952.442.957 (3)114
C18—H18···O20.952.393.234 (3)147
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Sn2(C2O4)(C6H5)6(CH4N2S)2]
Mr940.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)12.9161 (2), 13.9870 (2), 21.8215 (3)
β (°) 99.238 (1)
V3)3891.09 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.659, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
31403, 4472, 3665
Rint0.057
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 1.09
No. of reflections4472
No. of parameters251
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.34, 1.11

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia,1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.81 (4)2.06 (4)2.824 (3)157 (4)
N2—H2A···O2ii0.86 (4)2.14 (4)2.970 (3)164 (3)
C6—H6···O10.952.442.957 (3)114
C18—H18···O20.952.393.234 (3)147
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDiallo, W., Okio, K. Y. A., Diop, C. A. K., Diop, L., Diop, L. A. & Russo, U. (2009). Main Group. Met. Chem. 32, 93–100.  CAS Google Scholar
First citationDiasse-Sarr, A., Diop, L., Mahon, M. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223–229.  CAS Google Scholar
First citationDiop, C. A. K., Diop, L. & Russo, U. (1999). Main Group. Met. Chem. 22, 217–220.  CAS Google Scholar
First citationDiop, C. A. K., Lahlou, M., Diop, L., Mahieu, B. & Russo, U. (1997). Main Group Met. Chem. 20, 681–686.  CAS Google Scholar
First citationDiop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257.  CrossRef CAS Web of Science Google Scholar
First citationKamruddin, S. K., Chattopadhyaya, T. K., Roy, A. & Tiekink, E. R. T. (1996). Appl. Organomet. Chem. 10, 513–521.  CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W.Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1992). Main Group Met.Chem. 15, 161–186.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds