metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1356-m1357

Bis[μ-(3-acetyl-2-hy­dr­oxy-6-methyl-4H-pyran-4-one-κ3O:O′,O′′)]di­aqua­tetra­kis­(pyridine-κN)dicopper(II) diperchlorate

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, bUnité de Recherche de Cimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000, Algeria, cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and dLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 15 September 2012; accepted 4 October 2012; online 13 October 2012)

In the centrosymmetric binuclear cation of the title compound, [Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2, the CuII atoms are bridged by a pair of two dehydro­acetate anions in a bis-/monodentate mode. The distorted octa­hedral N2O4 coordination sphere of the metal cation is completed by two pyridine N atoms and one O atom of a water mol­ecule. The complex cations and the perchlorate counter anions are arranged in layers parallel to (100). O—H⋯O hydrogen bonds between the coordinating water mol­ecules and the perchlorate anions constitute ribbons parallel to [10-1]. C—H⋯O hydrogen bonds are also observed.

Related literature

For the synthesis of similar compounds, see: Tan & Kok-Peng Ang (1988[Tan, S. F. & Kok-Peng Ang, K. P. (1988). Transition Met. Chem. 13, 64-68.]); El-Kubaisi & Ismail (1994[El-Kubaisi, A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785-1788.]); Danilova et al. (2003[Danilova, T. I., Rosenberg, D. I., Vorontsov, V., Starikova, Z. A. & Hopf, H. (2003). Tetrahedron Asymmetry, 14, 1375-1383.]); Munde et al. (2010[Munde, A. A., Jagdale, A. N., Jahdav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349-359.]); Ourari et al. (2011[Ourari, A., Derafa, W., Bouacida, S. & Aggoun, D. (2011). Acta Cryst. E67, m1720-m1721.]). For applications of related compounds, see: Maiti et al. (1988[Maiti, A., Guha, A. K. & Ghosh, S. (1988). J. Inorg. Biochem. 33, 57-65.]); Mohan et al. (1981[Mohan, M., Agarwal, A. & Jha, N. K. (1981). J. Inorg. Biochem. 34, 41-54.]); Das & Livingstone (1976[Das, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5-10.]); Ourari et al. (2008[Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). Electrochem. Commun. 10, 1736-1739.], 2012[Ourari, A., Khelafi, M., Aggoun, D., Jutand, A. & Amatore, C. (2012). Electrochim. Acta, 75, 366-370.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2

  • Mr = 1012.70

  • Triclinic, [P \overline 1]

  • a = 9.9371 (4) Å

  • b = 10.3072 (4) Å

  • c = 10.4440 (5) Å

  • α = 99.624 (4)°

  • β = 90.540 (3)°

  • γ = 97.895 (4)°

  • V = 1044.09 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 180 K

  • 0.44 × 0.34 × 0.13 mm

Data collection
  • Agilent Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.505, Tmax = 1.000

  • 20280 measured reflections

  • 4692 independent reflections

  • 3889 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.140

  • S = 1.12

  • 4692 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.922 (3)
Cu1—O2 1.962 (3)
Cu1—N2 2.005 (3)
Cu1—N1 2.006 (3)
Cu1—O1W 2.325 (3)
Cu1—O4i 2.737 (3)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O12 0.83 (6) 2.13 (6) 2.934 (9) 165 (6)
O1W—H2W⋯O11ii 0.74 (6) 2.06 (6) 2.772 (9) 164 (6)
C9—H9⋯O13iii 0.93 2.56 3.389 (7) 148
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x-1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dehydroacetic acid is used for the synthesis of heterocyclic compounds, some of them with therapeutic activities useful for treatment of human diseases (Das & Livingstone, 1976; Mohan et al., 1981; Maiti et al., 1988). Schiff bases, on the other hand, are widely applied in the synthesis transition metal coordination compounds (Tan & Kok-Peng Ang, 1988; El-Kubaisi & Ismail, 1994; Munde et al., 2010), showing catalytic activities particularly in the oxidation reactions carried out according to the cytochrome P450 model (Ourari et al., 2008, 2011, 2012). Thus, we attempted to synthesize Schiff base half-units in order to use them as starting materials to obtain unsymmetrical tetradentate Schiff base complexes according the Danilova method's (Danilova et al., 2003). Here we describe the formation of a new dinuclear complex, [Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2], (I), prepared from dehydroacetic acid, copper perchlorate and pyridine in methanolic solution.

The molecular structure of the complex binuclear and centrosymmetric cation of (I) is illustrated in Fig. 1. The connection mode of the copper cations exhibits dimers, i.e. two copper cations are bridged by two dehydroacetate anions in a bis-/monodentate fashion. The asymmetric unit of (I) contains only half of such a dimer. The distorted octahedral coordination sphere around the copper cation is completed by two pyridine ligands and one water molecule. The bond lengths range from 1.922 (3) to 2.325 (3) Å for the Cu—O distances with one more considerably longer bond for Cu—O4 of 2.737 (3) Å; the Cu—N bond lengths are 2.005 (3) and 2.006 (3) Å.

The crystal packing in (I) can be described by alterning layers of cations and tetrahedral perchlorate anions arranged parallel to (100) (Fig. 2). Intermolecular O—H···O hydrogen bonds (Table 2) between the coordinating water molecules and perchlorate anions constitute ribbons parallel to [101]; C—H···O hydrogen bonding interactions eventually links these constituents (Fig. 3).

Related literature top

For the synthesis of similar compounds, see: Tan & Kok-Peng Ang (1988); El-Kubaisi & Ismail (1994); Danilova et al. (2003); Munde et al. (2010); Ourari et al. (2011). For applications of related compounds, see: Maiti et al. (1988); Mohan et al. (1981); Das & Livingstone (1976); Ourari et al. (2008, 2012).

Experimental top

0.168 g (1 mmol) dehydroacetic acid and 0.373 g (1 mmol) copper bis-perchlorate hexahydrate were dissolved in 20 ml of methanol. To this solution 0.108 g (1 mmol) of 1,2-phenylendiamine was added with an excess of pyridine. The mixture was held under stirring and argon atmosphere for two hours. After that time a precipitate appeared that was recovered by filtration. The solid was washed several times with methanol before it was dried under vacuum (yield 64%). From the resulting filtrate crystals were obtained by slow evaporation.

Refinement top

The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl). H1W and H2W protons of the water molecule were located in a difference Fourier map and were refined isotropically with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The binuclear complex cation of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms and perchlorate anions were omitted for clarity. [Symmetry code: (i)-x, -y + 1, -z.]
[Figure 2] Fig. 2. Alternating polyhedra of (I) viewed along [001] showing ClO4 tetrahedra in pink and CuN2O4 octahedra in blue.
[Figure 3] Fig. 3. The connection of the components through O—H···O and C—H···O hydrogen bonds (dashed lines).
Bis[µ-(3-acetyl-2-hydroxy-6-methyl-4H-pyran-4-one-κ3O: O',O'')]diaquatetrakis(pyridine-κN)dicopper(II) diperchlorate top
Crystal data top
[Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2Z = 1
Mr = 1012.70F(000) = 518
Triclinic, P1Dx = 1.611 Mg m3
a = 9.9371 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3072 (4) ÅCell parameters from 12265 reflections
c = 10.4440 (5) Åθ = 2.6–28.3°
α = 99.624 (4)°µ = 1.23 mm1
β = 90.540 (3)°T = 180 K
γ = 97.895 (4)°Fragment, dark blue
V = 1044.09 (8) Å30.44 × 0.34 × 0.13 mm
Data collection top
Agilent Xcalibur
diffractometer
4692 independent reflections
Radiation source: fine-focus sealed tube3889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.2632 pixels mm-1θmax = 28.2°, θmin = 2.7°
ω scansh = 1311
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1313
Tmin = 0.505, Tmax = 1.000l = 1313
20280 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0426P)2 + 3.6572P]
where P = (Fo2 + 2Fc2)/3
4692 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2γ = 97.895 (4)°
Mr = 1012.70V = 1044.09 (8) Å3
Triclinic, P1Z = 1
a = 9.9371 (4) ÅMo Kα radiation
b = 10.3072 (4) ŵ = 1.23 mm1
c = 10.4440 (5) ÅT = 180 K
α = 99.624 (4)°0.44 × 0.34 × 0.13 mm
β = 90.540 (3)°
Data collection top
Agilent Xcalibur
diffractometer
4692 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3889 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 1.000Rint = 0.037
20280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.14 e Å3
4692 reflectionsΔρmin = 0.65 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13889 (5)0.33620 (4)0.22133 (5)0.02379 (14)
Cl10.54880 (11)0.73089 (10)0.34098 (11)0.0366 (3)
O30.2147 (3)0.7115 (3)0.0994 (3)0.0314 (6)
O40.0272 (3)0.7603 (3)0.0061 (3)0.0397 (7)
O20.0424 (3)0.4919 (3)0.2469 (3)0.0287 (6)
O10.2610 (3)0.4210 (3)0.1090 (3)0.0294 (6)
O1W0.2668 (4)0.4378 (4)0.4076 (4)0.0436 (8)
H1W0.322 (6)0.498 (6)0.387 (6)0.052*
H2W0.304 (6)0.415 (6)0.459 (6)0.052*
O140.5337 (5)0.8399 (4)0.4391 (4)0.0721 (13)
N10.2368 (3)0.1771 (3)0.1824 (3)0.0240 (6)
N20.0062 (3)0.2363 (3)0.3136 (3)0.0248 (7)
O130.5953 (5)0.7736 (5)0.2227 (4)0.0706 (12)
C120.3329 (4)0.5426 (4)0.0505 (4)0.0270 (8)
H120.4040.49280.06780.032*
C10.2806 (4)0.1181 (4)0.2765 (4)0.0293 (8)
H10.26620.15310.36250.035*
C160.1369 (4)0.5980 (3)0.0778 (4)0.0223 (7)
C150.1196 (4)0.6938 (4)0.0055 (4)0.0267 (8)
C20.3464 (5)0.0069 (4)0.2508 (4)0.0347 (10)
H20.37730.03120.31820.042*
C180.0449 (5)0.6868 (4)0.2296 (4)0.0332 (9)
H18A0.11730.67940.16620.05*
H18B0.00550.77460.24090.05*
H18C0.08210.67060.31090.05*
C50.2587 (4)0.1269 (4)0.0587 (4)0.0302 (9)
H50.23090.16920.00690.036*
C110.2416 (4)0.5159 (3)0.0508 (4)0.0230 (7)
C40.3208 (5)0.0149 (4)0.0251 (4)0.0372 (10)
H40.33260.0190.06160.045*
C30.3650 (5)0.0458 (4)0.1227 (4)0.0371 (10)
H30.4070.12160.10240.044*
C100.0591 (4)0.1101 (4)0.2648 (4)0.0293 (8)
H100.0210.06710.19140.035*
C130.3180 (4)0.6368 (4)0.1201 (4)0.0277 (8)
C140.4058 (5)0.6759 (5)0.2262 (5)0.0427 (11)
H14A0.48260.62830.23230.064*
H14B0.43680.76970.20760.064*
H14C0.35450.65490.30710.064*
C170.0485 (4)0.5860 (4)0.1837 (4)0.0230 (7)
C90.1668 (5)0.0422 (4)0.3184 (4)0.0363 (10)
H90.19970.04550.28290.044*
C80.2253 (5)0.1065 (5)0.4261 (5)0.0395 (10)
H80.30.06370.46290.047*
C70.1711 (5)0.2350 (5)0.4780 (4)0.0410 (11)
H70.20750.27970.55150.049*
O110.6447 (9)0.6599 (10)0.3795 (6)0.179 (5)
O120.4201 (7)0.6613 (8)0.3069 (6)0.140 (3)
C60.0622 (5)0.2967 (4)0.4196 (4)0.0318 (9)
H60.02610.38350.4550.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0241 (3)0.0198 (2)0.0295 (2)0.00679 (17)0.00515 (18)0.00681 (17)
Cl10.0365 (6)0.0255 (5)0.0483 (6)0.0053 (4)0.0024 (5)0.0072 (4)
O30.0299 (16)0.0301 (14)0.0389 (16)0.0094 (12)0.0052 (12)0.0152 (12)
O40.0356 (17)0.0455 (18)0.0476 (18)0.0221 (14)0.0078 (14)0.0220 (15)
O20.0314 (15)0.0247 (13)0.0324 (14)0.0084 (11)0.0070 (12)0.0075 (11)
O10.0255 (15)0.0268 (14)0.0412 (16)0.0114 (11)0.0075 (12)0.0143 (12)
O1W0.050 (2)0.0353 (18)0.0444 (19)0.0003 (15)0.0157 (16)0.0085 (15)
O140.107 (4)0.050 (2)0.054 (2)0.015 (2)0.005 (2)0.0095 (18)
N10.0224 (16)0.0226 (15)0.0284 (16)0.0053 (12)0.0029 (13)0.0068 (12)
N20.0257 (17)0.0219 (15)0.0277 (16)0.0055 (13)0.0012 (13)0.0044 (12)
O130.080 (3)0.078 (3)0.057 (2)0.005 (2)0.007 (2)0.028 (2)
C120.0186 (19)0.0291 (19)0.034 (2)0.0055 (15)0.0027 (16)0.0067 (16)
C10.033 (2)0.030 (2)0.0273 (19)0.0101 (17)0.0069 (16)0.0080 (15)
C160.0181 (18)0.0178 (16)0.0297 (18)0.0008 (14)0.0027 (14)0.0030 (14)
C150.0223 (19)0.0242 (18)0.034 (2)0.0038 (15)0.0024 (16)0.0063 (15)
C20.041 (3)0.032 (2)0.036 (2)0.0147 (19)0.0022 (19)0.0151 (17)
C180.037 (2)0.032 (2)0.034 (2)0.0153 (18)0.0069 (18)0.0038 (17)
C50.033 (2)0.031 (2)0.0293 (19)0.0107 (17)0.0014 (17)0.0066 (16)
C110.0191 (18)0.0190 (16)0.0306 (19)0.0011 (14)0.0028 (15)0.0050 (14)
C40.044 (3)0.035 (2)0.032 (2)0.016 (2)0.0001 (19)0.0030 (17)
C30.039 (3)0.030 (2)0.045 (2)0.0190 (19)0.002 (2)0.0024 (18)
C100.029 (2)0.0258 (19)0.032 (2)0.0012 (16)0.0049 (17)0.0031 (15)
C130.0200 (19)0.0275 (19)0.035 (2)0.0015 (15)0.0001 (16)0.0067 (16)
C140.038 (3)0.045 (3)0.052 (3)0.011 (2)0.015 (2)0.022 (2)
C170.0201 (18)0.0207 (17)0.0277 (18)0.0035 (14)0.0028 (14)0.0020 (14)
C90.037 (2)0.032 (2)0.038 (2)0.0039 (18)0.0037 (19)0.0062 (18)
C80.032 (2)0.048 (3)0.041 (2)0.000 (2)0.0091 (19)0.016 (2)
C70.045 (3)0.045 (3)0.036 (2)0.012 (2)0.019 (2)0.0074 (19)
O110.250 (9)0.288 (10)0.075 (4)0.234 (9)0.050 (5)0.081 (5)
O120.113 (5)0.165 (6)0.098 (4)0.085 (5)0.023 (4)0.027 (4)
C60.037 (2)0.029 (2)0.028 (2)0.0066 (17)0.0056 (17)0.0011 (16)
Geometric parameters (Å, º) top
Cu1—O11.922 (3)C16—C111.431 (5)
Cu1—O21.962 (3)C16—C151.447 (5)
Cu1—N22.005 (3)C2—C31.382 (6)
Cu1—N12.006 (3)C2—H20.93
Cu1—O1W2.325 (3)C18—C171.509 (5)
Cu1—O4i2.737 (3)C18—H18A0.96
Cl1—O111.374 (5)C18—H18B0.96
Cl1—O121.390 (6)C18—H18C0.96
Cl1—O141.414 (4)C5—C41.379 (5)
Cl1—O131.439 (4)C5—H50.93
O3—C131.363 (5)C4—C31.380 (6)
O3—C151.386 (5)C4—H40.93
O4—C151.219 (5)C3—H30.93
O2—C171.256 (4)C10—C91.373 (6)
O1—C111.269 (4)C10—H100.93
O1W—H1W0.82 (6)C13—C141.491 (6)
O1W—H2W0.74 (6)C14—H14A0.96
N1—C11.337 (5)C14—H14B0.96
N1—C51.340 (5)C14—H14C0.96
N2—C61.341 (5)C9—C81.383 (6)
N2—C101.346 (5)C9—H90.93
C12—C131.329 (5)C8—C71.377 (7)
C12—C111.437 (5)C8—H80.93
C12—H120.93C7—C61.378 (6)
C1—C21.385 (5)C7—H70.93
C1—H10.93C6—H60.93
C16—C171.430 (5)
O1—Cu1—O289.43 (12)C1—C2—H2120.8
O1—Cu1—N2171.16 (14)C17—C18—H18A109.5
O2—Cu1—N290.52 (13)C17—C18—H18B109.5
O1—Cu1—N188.01 (13)H18A—C18—H18B109.5
O2—Cu1—N1176.25 (14)C17—C18—H18C109.5
N2—Cu1—N191.58 (14)H18A—C18—H18C109.5
O1—Cu1—O1W92.98 (14)H18B—C18—H18C109.5
O2—Cu1—O1W86.49 (13)N1—C5—C4122.4 (4)
N2—Cu1—O1W95.84 (14)N1—C5—H5118.8
N1—Cu1—O1W96.38 (14)C4—C5—H5118.8
O1—Cu1—O4i87.05 (12)O1—C11—C16125.5 (4)
O2—Cu1—O4i87.41 (12)O1—C11—C12117.0 (3)
N2—Cu1—O4i84.12 (13)C16—C11—C12117.6 (3)
N1—Cu1—O4i89.71 (12)C5—C4—C3118.7 (4)
O1W—Cu1—O4i173.90 (11)C5—C4—H4120.6
O11—Cl1—O12116.7 (6)C3—C4—H4120.6
O11—Cl1—O14110.3 (4)C4—C3—C2119.4 (4)
O12—Cl1—O14107.6 (4)C4—C3—H3120.3
O11—Cl1—O13106.5 (4)C2—C3—H3120.3
O12—Cl1—O13103.9 (4)N2—C10—C9122.9 (4)
O14—Cl1—O13111.7 (3)N2—C10—H10118.5
C13—O3—C15122.2 (3)C9—C10—H10118.5
C17—O2—Cu1129.4 (2)C12—C13—O3121.5 (4)
C11—O1—Cu1127.4 (2)C12—C13—C14127.0 (4)
Cu1—O1W—H1W107 (4)O3—C13—C14111.5 (3)
Cu1—O1W—H2W135 (5)C13—C14—H14A109.5
H1W—O1W—H2W103 (6)C13—C14—H14B109.5
C1—N1—C5118.5 (3)H14A—C14—H14B109.5
C1—N1—Cu1122.0 (3)C13—C14—H14C109.5
C5—N1—Cu1119.5 (3)H14A—C14—H14C109.5
C6—N2—C10117.7 (4)H14B—C14—H14C109.5
C6—N2—Cu1120.9 (3)O2—C17—C16123.2 (3)
C10—N2—Cu1121.1 (3)O2—C17—C18114.3 (3)
C13—C12—C11121.4 (4)C16—C17—C18122.4 (3)
C13—C12—H12119.3C10—C9—C8118.8 (4)
C11—C12—H12119.3C10—C9—H9120.6
N1—C1—C2122.5 (4)C8—C9—H9120.6
N1—C1—H1118.7C7—C8—C9118.8 (4)
C2—C1—H1118.7C7—C8—H8120.6
C17—C16—C11121.5 (3)C9—C8—H8120.6
C17—C16—C15119.6 (3)C8—C7—C6119.2 (4)
C11—C16—C15118.9 (3)C8—C7—H7120.4
O4—C15—O3114.4 (3)C6—C7—H7120.4
O4—C15—C16127.6 (4)N2—C6—C7122.5 (4)
O3—C15—C16118.0 (3)N2—C6—H6118.7
C3—C2—C1118.4 (4)C7—C6—H6118.7
C3—C2—H2120.8
O1—Cu1—O2—C1714.4 (3)Cu1—O1—C11—C1613.9 (6)
N2—Cu1—O2—C17156.7 (3)Cu1—O1—C11—C12166.1 (3)
O1W—Cu1—O2—C17107.5 (3)C17—C16—C11—O15.2 (6)
O2—Cu1—O1—C1119.7 (3)C15—C16—C11—O1174.0 (4)
N1—Cu1—O1—C11157.4 (3)C17—C16—C11—C12174.8 (3)
O1W—Cu1—O1—C11106.1 (3)C15—C16—C11—C126.0 (5)
O1—Cu1—N1—C1130.8 (3)C13—C12—C11—O1177.6 (4)
N2—Cu1—N1—C158.0 (3)C13—C12—C11—C162.4 (6)
O1W—Cu1—N1—C138.0 (3)N1—C5—C4—C31.6 (7)
O1—Cu1—N1—C549.7 (3)C5—C4—C3—C20.1 (7)
N2—Cu1—N1—C5121.5 (3)C1—C2—C3—C41.5 (7)
O1W—Cu1—N1—C5142.6 (3)C6—N2—C10—C90.2 (6)
O2—Cu1—N2—C639.9 (3)Cu1—N2—C10—C9174.0 (3)
N1—Cu1—N2—C6143.3 (3)C11—C12—C13—O30.7 (6)
O1W—Cu1—N2—C646.5 (3)C11—C12—C13—C14179.1 (4)
O2—Cu1—N2—C10134.0 (3)C15—O3—C13—C120.1 (6)
N1—Cu1—N2—C1042.8 (3)C15—O3—C13—C14179.9 (4)
O1W—Cu1—N2—C10139.6 (3)Cu1—O2—C17—C162.4 (5)
C5—N1—C1—C20.5 (6)Cu1—O2—C17—C18178.1 (3)
Cu1—N1—C1—C2179.0 (3)C11—C16—C17—O211.1 (6)
C13—O3—C15—O4174.1 (4)C15—C16—C17—O2168.1 (4)
C13—O3—C15—C163.8 (5)C11—C16—C17—C18168.4 (4)
C17—C16—C15—O48.3 (6)C15—C16—C17—C1812.4 (5)
C11—C16—C15—O4170.9 (4)N2—C10—C9—C81.1 (7)
C17—C16—C15—O3174.0 (3)C10—C9—C8—C71.9 (7)
C11—C16—C15—O36.7 (5)C9—C8—C7—C61.4 (7)
N1—C1—C2—C31.2 (7)C10—N2—C6—C70.7 (6)
C1—N1—C5—C42.0 (6)Cu1—N2—C6—C7173.5 (3)
Cu1—N1—C5—C4177.5 (3)C8—C7—C6—N20.1 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O120.83 (6)2.13 (6)2.934 (9)165 (6)
O1W—H2W···O11ii0.74 (6)2.06 (6)2.772 (9)164 (6)
C9—H9···O13iii0.932.563.389 (7)148
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O4)(H2O)(C5H5N)2]2(ClO4)2
Mr1012.70
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)9.9371 (4), 10.3072 (4), 10.4440 (5)
α, β, γ (°)99.624 (4), 90.540 (3), 97.895 (4)
V3)1044.09 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.44 × 0.34 × 0.13
Data collection
DiffractometerAgilent Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.505, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20280, 4692, 3889
Rint0.037
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.140, 1.12
No. of reflections4692
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.14, 0.65

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O11.922 (3)Cu1—N12.006 (3)
Cu1—O21.962 (3)Cu1—O1W2.325 (3)
Cu1—N22.005 (3)Cu1—O4i2.737 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O120.83 (6)2.13 (6)2.934 (9)165 (6)
O1W—H2W···O11ii0.74 (6)2.06 (6)2.772 (9)164 (6)
C9—H9···O13iii0.93002.56003.389 (7)148.00
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y1, z.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDanilova, T. I., Rosenberg, D. I., Vorontsov, V., Starikova, Z. A. & Hopf, H. (2003). Tetrahedron Asymmetry, 14, 1375–1383.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, M. & Livingstone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10.  CrossRef CAS Web of Science Google Scholar
First citationEl-Kubaisi, A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785–1788.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMaiti, A., Guha, A. K. & Ghosh, S. (1988). J. Inorg. Biochem. 33, 57–65.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMohan, M., Agarwal, A. & Jha, N. K. (1981). J. Inorg. Biochem. 34, 41–54.  CrossRef Web of Science Google Scholar
First citationMunde, A. A., Jagdale, A. N., Jahdav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349–359.  Web of Science CrossRef CAS Google Scholar
First citationOurari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). Electrochem. Commun. 10, 1736–1739.  Web of Science CrossRef CAS Google Scholar
First citationOurari, A., Derafa, W., Bouacida, S. & Aggoun, D. (2011). Acta Cryst. E67, m1720–m1721.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOurari, A., Khelafi, M., Aggoun, D., Jutand, A. & Amatore, C. (2012). Electrochim. Acta, 75, 366–370.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. F. & Kok-Peng Ang, K. P. (1988). Transition Met. Chem. 13, 64–68.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1356-m1357
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds