[Journal logo]

Volume 68 
Part 11 
Page i83  
November 2012  

Received 28 September 2012
Accepted 22 October 2012
Online 27 October 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](Dy-Ni) = 0.002 Å
R = 0.022
wR = 0.043
Data-to-parameter ratio = 11.6
Details
Open access

Redetermination of dysprosium trinickel from single-crystal X-ray data

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya street 6, 79005 Lviv, Ukraine, and b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA
Correspondence e-mail: v.levyckyy@gmail.com

The crystal structure of the title compound, DyNi3, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaire & Paccard (1969[Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9-16.]). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9-16; Tsai et al. (1974[Tsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582-3586.]). J. Appl. Phys. 45, 3582-3586], the present redetermination revealed refined coordinates and anisotropic displacement parameters for all atoms. The crystal structure of DyNi3 adopts the PuNi3 structure type and can be derived from the CaCu5 structure type as an intergrowth structure. The asymmetric unit contains two Dy sites (site symmetries 3m and -3) and three Ni sites (m, 3m and -3m). The two different coordination polyhedra of Dy are a Frank-Kasper polyhedron formed by four Dy and 12 Ni atoms and a pseudo-Frank-Kasper polyhedron formed by two Dy and 18 Ni atoms. The three different coordination polyhedra of Ni are Frank-Kasper icosahedra formed by five Dy and seven Ni atoms, three Dy and nine Ni atoms, and six Dy and six Ni atoms.

Related literature

For the PuNi3 structure type, see: Cromer & Olsen (1959[Cromer, D. T. & Olsen, C. E. (1959). Acta Cryst. 12, 689-694.]). For previous powder diffraction studies of the title compoud, see: Paccard & Pauthenet (1967[Paccard, D. & Pauthenet, R. (1967). Compt. Rend. Sci. Ser. B. 264, 1056-1059.]); Lemaire & Paccard (1969[Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9-16.]); Virkar & Raman (1969[Virkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59-66.]); Buschow & van der Goot (1970[Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419-428.]); Yakinthos & Paccard (1972[Yakinthos, J. & Paccard, D. (1972). Solid State Commun. 10, 989-993.]); Tsai et al. (1974[Tsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582-3586.]). For related compounds, see: Virkar & Raman (1969[Virkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59-66.]); Buschow & van der Goot (1970[Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419-428.]); Levytskyy et al. (2012[Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20.]). For the CaCu5 structure type, see: Haucke (1940[Haucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17-22.]); Nowotny (1942[Nowotny, H. (1942). Z. Metallkd. 34, 247-253.]). For the MgCu2 structure type, see: Friauf (1927[Friauf, J. B. (1927). J. Am. Chem. Soc. 49, 3107-3114.]); Ohba et al. (1984[Ohba, T., Kitano, Y. & Komura, Y. (1984). Acta Cryst. C40, 1-5.]). For intergrowth structures, see: Parthé et al. (1985[Parthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164-174.]); Grin (1992[Grin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77-95. Dordrecht: Kluwer Academic Publishers.]).

Experimental

Crystal data
  • DyNi3

  • Mr = 338.63

  • Trigonal, [R \overline 3m ]

  • a = 4.966 (2) Å

  • c = 24.37 (1) Å

  • V = 520.5 (4) Å3

  • Z = 9

  • Mo K[alpha] radiation

  • [mu] = 55.52 mm-1

  • T = 293 K

  • 0.13 × 0.08 × 0.06 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (PLATON, Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.071, Tmax = 0.182

  • 1516 measured reflections

  • 197 independent reflections

  • 163 reflections with I > 2[sigma](I)

  • Rint = 0.058

Refinement
  • R[F2 > 2[sigma](F2)] = 0.022

  • wR(F2) = 0.043

  • S = 1.01

  • 197 reflections

  • 17 parameters

  • [Delta][rho]max = 2.77 e Å-3

  • [Delta][rho]min = -1.33 e Å-3

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2688 ).


References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.  [ISI] [CrossRef] [ChemPort] [details]
Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419-428.  [CrossRef] [ChemPort]
Cromer, D. T. & Olsen, C. E. (1959). Acta Cryst. 12, 689-694.  [CrossRef] [ChemPort] [details]
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  [CrossRef] [ChemPort] [details]
Friauf, J. B. (1927). J. Am. Chem. Soc. 49, 3107-3114.  [CrossRef] [ChemPort]
Grin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77-95. Dordrecht: Kluwer Academic Publishers.
Haucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17-22.  [CrossRef] [ChemPort]
Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9-16.  [ChemPort]
Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20.  [CrossRef] [details]
Nowotny, H. (1942). Z. Metallkd. 34, 247-253.  [ChemPort]
Ohba, T., Kitano, Y. & Komura, Y. (1984). Acta Cryst. C40, 1-5.  [CrossRef] [details]
Paccard, D. & Pauthenet, R. (1967). Compt. Rend. Sci. Ser. B. 264, 1056-1059.
Parthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164-174.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Stoe & Cie. (2009). X-AREA. Stoe & Cie, Darmstadt, Germany.
Tsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582-3586.  [CrossRef] [ChemPort] [ISI]
Virkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59-66.  [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Yakinthos, J. & Paccard, D. (1972). Solid State Commun. 10, 989-993.  [CrossRef] [ChemPort] [ISI]


Acta Cryst (2012). E68, i83  [ doi:10.1107/S1600536812043747 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.