supplementary materials


xu5625 scheme

Acta Cryst. (2012). E68, m1327-m1328    [ doi:10.1107/S1600536812041049 ]

Trichlorido(6-methyl-2,2'-bipyridine-[kappa]2N,N')(dimethylsulfoxide-[kappa]O)indium(III)

S. A. Shirvan, S. Haydari Dezfuli, E. Golabi and M. A. Gholamzadeh

Abstract top

In the title compound, [In(C11H10N2)Cl3(C2H6OS)], the InIII cation is six-coordinated in a distorted octahedral configuration by two N atoms from the chelating 6-methyl-2,2'-bipyridine ligand, one O atom from a dimethylsulfoxide group and three Cl- anions. Weak intermolecular C-H...O and C-H...Cl hydrogen bonds and intramolecular C-H...Cl hydrogen bonds are present in the structure.

Comment top

Recently, we reported the synthesis and crystal structure of [In(4,4'-dmbipy)Cl3(MeOH)].MeOH, (II), (Shirvan & Haydari Dezfuli, 2012a) and [In{NH(py)2)Cl3(DMSO)], (III), (Shirvan & Haydari Dezfuli, 2012b) [where 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine and NH(py)2 is di-2-pyridylamine]. There are several InIII complexes, with formula, [In(N—N)Cl3(L)], (L = DMSO, H2O, MeOH and EtOH), such as [In(bipy)Cl3(H2O)], (IV), [In(bipy)Cl3(EtOH)], (V) and [In(bipy)Cl3(H2O)].H2O, (VI), (Malyarick et al., 1992), [In(phen)Cl3(DMSO)], (VII), (Nan et al., 1987), [In(phen)Cl3(H2O)], (VIII) and [In(phen)Cl3(EtOH)].EtOH, (IX), (Ilyukhin & Malyarik, 1994), [In(4,4'-dmbipy)Cl3(DMSO)], (X), (Ahmadi et al., 2008a), [In(5,5'-dmbipy)Cl3(MeOH)], (XI), (Kalateh et al., 2008), [In(4,4'-dtbipy)Cl3(MeOH)].0.5MeOH, (XII), (Abedi et al., 2012a), [In(4 b t)Cl3(MeOH)], (XIII) and [In(4 b t)Cl3(DMSO)], (XIV), (Abedi et al., 2012b) [where bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, DMSO is dimethyl sulfoxide, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 4,4'-dtbipy is 4,4'-di-τert-butyl-2,2'-bipyridine and 4 b t is 4,4'-bithiazole] have been synthesized and characterized by single-crystal X-ray diffraction methods. 6-Methyl-2,2'-bipyridine (6-mbipy) is a good ligand and a few complexes with 6-mbipy have been prepared, such as that of [Hg(6-mbipy)Cl2], (XV), (Ahmadi et al., 2008b), [Pt(6-mbipy)Cl4], (XVI), (Amani et al., 2009), [Pb4(NO3)8(6-mbipy)4], (XVII), (Ahmadi et al., 2009), [Zn(6-mbipy)Br2], (XVIII), (Kalateh et al., 2010), [Zn(6-mbipy)Cl2], (IXX), (Ahmadi et al., 2008c), [Pd(6-mbipy)Cl2], (XX), (Newkome et al., 1982), [Ru(6-mbipy)3][BF4]2, (XXI), (Onggo et al., 2005), [Fe(6-mbipy)3][ClO4]2.6-mbipy, (XXII), (Onggo et al., 1990), and [Cd(6-mbipy)Br2(DMSO)], (XXIII), (Shirvan et al., 2012). We report herein the synthesis and crystal structure of the title compound (I).

In the title compound, (Fig. 1), the InIII atom is six-coordinated in a distorted octahedral configuration by two N atoms from the chelating 6-methyl-2,2'-bipyridine ligand, one O atom from a dimethyl sulfoxide and three Cl atoms. The In—Cl, In—N and In—O bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O and C—H···Cl hydrogen bonds and π-π contact (Table 2 & Fig. 2) between the pyridine rings, Cg3—Cg3i [symmetry cods: (i) –X,2-Y,-Z, where Cg3 is centroid of the ring (N2/C6—C10)] may stabilize the structure, with centroid-centroid distance 3.774 (2) Å.

Related literature top

For related structures, see: Abedi et al. (2012a,b); Ahmadi et al. (2008a,b,c, 2009); Amani et al. (2009); Ilyukhin et al. (1994); Kalateh et al. (2008, 2010); Malyarick et al. (1992); Nan et al. (1987); Newkome et al. (1982); Onggo et al. (1990, 2005); Shirvan & Haydari Dezfuli (2012a,b); Shirvan et al. (2012).

Experimental top

For the preparation of the title compound, (I), a solution of 6-methyl-2,2'-bipyridine (0.28 g, 0.26 ml, 1.65 mmol) in methanol (10 ml) was added to a solution of InCl3.4H2O (0.48 g, 1.65 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.56 g, 72.3%).

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
Trichlorido(6-methyl-2,2'-bipyridine-κ2N,N')(dimethyl sulfoxide-κO)indium (III) top
Crystal data top
[In(C11H10N2)Cl3(C2H6OS)]F(000) = 928
Mr = 469.52Dx = 1.754 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14275 reflections
a = 13.0169 (6) Åθ = 1.6–26.0°
b = 8.5548 (3) ŵ = 1.90 mm1
c = 15.9964 (8) ÅT = 298 K
β = 93.393 (4)°Prism, colorless
V = 1778.19 (14) Å30.40 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube2831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1615
Tmin = 0.581, Tmax = 0.701k = 1010
14275 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
3496 reflections(Δ/σ)max = 0.013
192 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[In(C11H10N2)Cl3(C2H6OS)]V = 1778.19 (14) Å3
Mr = 469.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0169 (6) ŵ = 1.90 mm1
b = 8.5548 (3) ÅT = 298 K
c = 15.9964 (8) Å0.40 × 0.25 × 0.20 mm
β = 93.393 (4)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
3496 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2831 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.701Rint = 0.053
14275 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.65 e Å3
S = 1.04Δρmin = 0.54 e Å3
3496 reflectionsAbsolute structure: ?
192 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2514 (2)0.9449 (3)0.13539 (18)0.0467 (7)
Cl10.12219 (10)0.60548 (12)0.13692 (9)0.0801 (4)
C110.0925 (4)0.6719 (6)0.1127 (4)0.0878 (16)
H11A0.05570.61850.07090.105*
H11B0.15890.62470.11650.105*
H11C0.05450.66440.16580.105*
Cl20.40731 (9)0.63682 (14)0.17190 (7)0.0715 (3)
N20.1563 (2)0.8750 (3)0.01655 (19)0.0455 (7)
C50.2065 (3)1.0631 (4)0.0914 (2)0.0453 (8)
C20.2834 (4)1.1141 (5)0.2520 (3)0.0704 (12)
H20.30951.12840.30690.084*
C30.2403 (4)1.2359 (5)0.2066 (3)0.0676 (12)
H30.23731.33490.23040.081*
In10.269337 (19)0.71247 (3)0.069351 (15)0.04247 (9)
C60.1608 (3)1.0271 (4)0.0064 (2)0.0458 (8)
Cl30.30194 (9)0.49559 (11)0.02363 (7)0.0630 (3)
S10.38648 (7)0.84709 (11)0.09440 (5)0.0444 (2)
C90.0639 (3)0.9526 (7)0.1425 (3)0.0697 (12)
H90.03000.92470.19320.084*
C120.5099 (4)0.7693 (6)0.1071 (3)0.0766 (13)
H12C0.52480.77380.16510.092*
H12B0.51210.66260.08850.092*
H12A0.56020.82920.07450.092*
C100.1050 (3)0.8364 (5)0.0894 (3)0.0572 (10)
C130.4079 (4)1.0435 (5)0.1239 (3)0.0660 (11)
H13A0.46481.08550.09020.079*
H13B0.34731.10420.11570.079*
H13C0.42321.04720.18190.079*
C80.0727 (4)1.1049 (7)0.1215 (3)0.0752 (13)
H80.04671.18200.15790.090*
C10.2870 (4)0.9711 (5)0.2141 (2)0.0635 (11)
H10.31560.88780.24480.076*
C70.1207 (3)1.1444 (5)0.0456 (3)0.0668 (11)
H70.12621.24860.02930.080*
O10.37807 (18)0.8589 (3)0.00075 (14)0.0470 (6)
C40.2017 (3)1.2113 (4)0.1264 (3)0.0581 (10)
H40.17221.29350.09540.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0648 (19)0.0362 (15)0.0397 (16)0.0001 (13)0.0090 (13)0.0021 (13)
Cl10.0865 (8)0.0494 (6)0.1099 (9)0.0006 (5)0.0514 (7)0.0107 (6)
C110.080 (3)0.086 (4)0.093 (4)0.007 (3)0.024 (3)0.025 (3)
Cl20.0945 (8)0.0633 (6)0.0549 (6)0.0203 (6)0.0109 (5)0.0082 (5)
N20.0420 (15)0.0475 (17)0.0473 (17)0.0019 (13)0.0036 (13)0.0010 (13)
C50.0477 (19)0.0385 (18)0.051 (2)0.0012 (15)0.0133 (16)0.0036 (15)
C20.105 (3)0.059 (3)0.048 (2)0.010 (2)0.010 (2)0.010 (2)
C30.088 (3)0.044 (2)0.072 (3)0.004 (2)0.018 (2)0.013 (2)
In10.05532 (16)0.03124 (13)0.04150 (14)0.00100 (11)0.00834 (10)0.00223 (10)
C60.0443 (18)0.0391 (18)0.055 (2)0.0020 (14)0.0118 (16)0.0051 (16)
Cl30.0866 (7)0.0446 (5)0.0588 (6)0.0033 (5)0.0124 (5)0.0110 (4)
S10.0469 (5)0.0475 (5)0.0386 (4)0.0044 (4)0.0013 (4)0.0013 (4)
C90.053 (2)0.102 (4)0.053 (2)0.010 (2)0.0027 (19)0.002 (3)
C120.072 (3)0.092 (3)0.067 (3)0.027 (3)0.017 (2)0.000 (3)
C100.046 (2)0.069 (3)0.056 (2)0.0017 (18)0.0019 (18)0.007 (2)
C130.094 (3)0.056 (2)0.048 (2)0.006 (2)0.004 (2)0.0128 (19)
C80.079 (3)0.088 (4)0.058 (3)0.024 (3)0.000 (2)0.017 (2)
C10.099 (3)0.050 (2)0.042 (2)0.002 (2)0.006 (2)0.0023 (17)
C70.079 (3)0.057 (2)0.065 (3)0.016 (2)0.009 (2)0.014 (2)
O10.0514 (14)0.0532 (14)0.0367 (13)0.0085 (11)0.0046 (10)0.0020 (11)
C40.067 (2)0.0359 (18)0.073 (3)0.0062 (18)0.010 (2)0.0004 (19)
Geometric parameters (Å, º) top
In1—Cl12.4330 (10)C3—H30.9300
In1—Cl22.4468 (11)C6—C71.385 (5)
In1—Cl32.4309 (9)S1—O11.536 (2)
In1—O12.227 (2)S1—C121.762 (4)
In1—N12.270 (3)S1—C131.772 (4)
In1—N22.398 (3)C9—C81.348 (7)
N1—C11.335 (5)C9—C101.394 (6)
N1—C51.346 (4)C9—H90.9300
C11—C101.462 (6)C12—H12C0.9600
C11—H11A0.9600C12—H12B0.9600
C11—H11B0.9600C12—H12A0.9600
C11—H11C0.9600C13—H13A0.9600
N2—C101.349 (5)C13—H13B0.9600
N2—C61.353 (4)C13—H13C0.9600
C5—C41.390 (5)C8—C71.376 (7)
C5—C61.483 (5)C8—H80.9300
C2—C11.368 (6)C1—H10.9300
C2—C31.371 (7)C7—H70.9300
C2—H20.9300C4—H40.9300
C3—C41.367 (7)
C1—N1—C5118.9 (3)N2—C6—C5117.2 (3)
C1—N1—In1123.2 (3)C7—C6—C5121.1 (3)
C5—N1—In1117.9 (2)O1—S1—C12104.9 (2)
C10—C11—H11A109.5O1—S1—C13102.90 (18)
C10—C11—H11B109.5C12—S1—C1399.7 (2)
H11A—C11—H11B109.5C8—C9—C10120.9 (4)
C10—C11—H11C109.5C8—C9—H9119.6
H11A—C11—H11C109.5C10—C9—H9119.6
H11B—C11—H11C109.5S1—C12—H12C109.5
C10—N2—C6118.8 (3)S1—C12—H12B109.5
C10—N2—In1127.5 (3)H12C—C12—H12B109.5
C6—N2—In1112.8 (2)S1—C12—H12A109.5
N1—C5—C4120.2 (4)H12C—C12—H12A109.5
N1—C5—C6117.5 (3)H12B—C12—H12A109.5
C4—C5—C6122.2 (3)N2—C10—C9120.3 (4)
C1—C2—C3117.9 (4)N2—C10—C11119.8 (4)
C1—C2—H2121.0C9—C10—C11119.9 (4)
C3—C2—H2121.0S1—C13—H13A109.5
C4—C3—C2119.8 (4)S1—C13—H13B109.5
C4—C3—H3120.1H13A—C13—H13B109.5
C2—C3—H3120.1S1—C13—H13C109.5
O1—In1—N179.77 (10)H13A—C13—H13C109.5
O1—In1—N277.17 (9)H13B—C13—H13C109.5
N1—In1—N271.48 (10)C9—C8—C7119.0 (4)
O1—In1—Cl389.36 (7)C9—C8—H8120.5
N1—In1—Cl3168.44 (8)C7—C8—H8120.5
N2—In1—Cl3102.44 (8)N1—C1—C2123.3 (4)
O1—In1—Cl1166.02 (7)N1—C1—H1118.3
N1—In1—Cl191.00 (8)C2—C1—H1118.3
N2—In1—Cl190.00 (7)C8—C7—C6119.2 (4)
Cl3—In1—Cl198.93 (4)C8—C7—H7120.4
O1—In1—Cl290.94 (7)C6—C7—H7120.4
N1—In1—Cl290.64 (8)S1—O1—In1122.40 (14)
N2—In1—Cl2159.89 (8)C3—C4—C5119.7 (4)
Cl3—In1—Cl293.47 (4)C3—C4—H4120.1
Cl1—In1—Cl299.71 (5)C5—C4—H4120.1
N2—C6—C7121.7 (4)
C1—N1—C5—C42.8 (5)In1—N2—C6—C517.8 (4)
In1—N1—C5—C4174.4 (3)N1—C5—C6—N27.9 (5)
C1—N1—C5—C6175.5 (3)C4—C5—C6—N2170.3 (3)
In1—N1—C5—C67.3 (4)N1—C5—C6—C7174.6 (3)
C1—C2—C3—C40.6 (7)C4—C5—C6—C77.1 (5)
C1—N1—In1—O1109.3 (3)C6—N2—C10—C94.4 (5)
C5—N1—In1—O167.8 (2)In1—N2—C10—C9163.4 (3)
C1—N1—In1—N2170.9 (3)C6—N2—C10—C11175.5 (4)
C5—N1—In1—N212.0 (2)In1—N2—C10—C1116.7 (5)
C1—N1—In1—Cl3129.4 (4)C8—C9—C10—N21.3 (6)
C5—N1—In1—Cl347.8 (6)C8—C9—C10—C11178.6 (5)
C1—N1—In1—Cl181.2 (3)C10—C9—C8—C71.7 (7)
C5—N1—In1—Cl1101.6 (2)C5—N1—C1—C22.3 (6)
C1—N1—In1—Cl218.5 (3)In1—N1—C1—C2174.8 (3)
C5—N1—In1—Cl2158.7 (2)C3—C2—C1—N10.6 (7)
C10—N2—In1—O1100.7 (3)C9—C8—C7—C61.5 (7)
C6—N2—In1—O167.7 (2)N2—C6—C7—C81.7 (6)
C10—N2—In1—N1176.0 (3)C5—C6—C7—C8175.6 (4)
C6—N2—In1—N115.6 (2)C12—S1—O1—In1112.8 (2)
C10—N2—In1—Cl314.2 (3)C13—S1—O1—In1143.3 (2)
C6—N2—In1—Cl3154.2 (2)N1—In1—O1—S1139.25 (18)
C10—N2—In1—Cl184.9 (3)N2—In1—O1—S166.10 (17)
C6—N2—In1—Cl1106.7 (2)Cl3—In1—O1—S136.81 (16)
C10—N2—In1—Cl2155.7 (2)Cl1—In1—O1—S189.9 (3)
C6—N2—In1—Cl212.7 (4)Cl2—In1—O1—S1130.27 (16)
C10—N2—C6—C74.7 (5)C2—C3—C4—C50.1 (7)
In1—N2—C6—C7164.9 (3)N1—C5—C4—C31.7 (6)
C10—N2—C6—C5172.7 (3)C6—C5—C4—C3176.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.753.348 (5)123
C11—H11B···Cl30.962.563.358 (6)140
C13—H13A···O1i0.962.473.419 (6)169
C13—H13C···Cl2ii0.962.823.612 (5)141
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+3/2, z1/2.
Selected bond lengths (Å) top
In1—Cl12.4330 (10)In1—O12.227 (2)
In1—Cl22.4468 (11)In1—N12.270 (3)
In1—Cl32.4309 (9)In1—N22.398 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.753.348 (5)123
C11—H11B···Cl30.962.563.358 (6)140
C13—H13A···O1i0.962.473.419 (6)169
C13—H13C···Cl2ii0.962.823.612 (5)141
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+3/2, z1/2.
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

references
References top

Abedi, A., Safari, A. R. & Amani, V. (2012a). Z. Kristallogr. New Cryst. Struct. 227, 169–198.

Abedi, A., Safari, N., Amani, V. & Khavasi, H. R. (2012b). J. Coord. Chem. 65, 325–338.

Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008b). Acta Cryst. E64, m1407.

Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008c). Acta Cryst. E64, m1306–m1307.

Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169–m1170.

Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008a). Acta Cryst. E64, m1266.

Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ilyukhin, A. B. & Malyarik, M. A. (1994). Kristallografiya, 39, 439–443.

Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m1241.

Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.

Malyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). Polyhedron, 11, 1067–1073.

Nan, D., Naidong, W., Zhenchao, D. & Shengzhi, H. (1987). Jiegou Huaxue, 6, 145–149.

Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783.

Onggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19–30.

Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m1189–m1190.

Shirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m1124.

Shirvan, S. A., Haydari Dezfuli, S. & Golabi, E. (2012). Acta Cryst. E68, m1256.