organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3153-o3154

[4-(Di­methyl­amino)­phen­yl]di­phenyl­phosphine selenide

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 27 September 2012; accepted 11 October 2012; online 20 October 2012)

In the title compound, C20H20NPSe, the P atom lies in a distorted tetra­hedral environment. The Tolman cone angle is 157° indicating steric crowding at this atom. In the crystal, weak C—H⋯Se inter­actions create linked dimeric units and C—H⋯π inter­actions are also observed.

Related literature

For investigations into the steric and electronic properties of phospho­rus containing ligands, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Otto & Roodt (2004[Otto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1-10.]); Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]); Cowley & Damasco (1971[Cowley, A. H. & Damasco, M. C. (1971). J. Am. Chem. Soc. 93, 6815-6821.]); Allen & Taylor (1982[Allen, D. W. & Taylor, B. F. (1982). J. Chem. Soc. Dalton Trans. pp. 51-54.]); Allen et al. (1985[Allen, D. W., Nowel, I. W. & Taylor, B. F. (1985). J. Chem. Soc. Dalton Trans. pp. 2505-2508.]). For the free phosphine related to the title compound, see: Dreissig & Plieth (1972[Dreissig, W. & Plieth, K. (1972). Z. Kristallogr. 135, 294-307.]). For the oxide analogue of the title compound, see: Lynch et al. (2003[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (2003). Aust. J. Chem. 56, 1135-1139.]). For the related phosphine selenide, see: Phasha et al. (2012[Phasha, Z. H., Makhoba, S. & Muller, A. (2012). Acta Cryst. E68, o243.]). For cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]). For details on the conformational fit of mol­ecules using Mercury, see: Macrae et al. (2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); Weng et al. (2008a[Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348-362.],b[Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955-957.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For background on Bent's rule, see: Bent (1961[Bent, H. A. (1961). Chem. Rev. 61, 275-311.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20NPSe

  • Mr = 384.3

  • Monoclinic, P 21 /c

  • a = 12.1757 (13) Å

  • b = 10.6173 (11) Å

  • c = 17.5211 (14) Å

  • β = 128.098 (5)°

  • V = 1782.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 100 K

  • 0.22 × 0.11 × 0.09 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.643, Tmax = 0.827

  • 31924 measured reflections

  • 4553 independent reflections

  • 3798 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.06

  • 4553 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 refer to the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯Se1i 0.98 3.25 3.833 (3) 120
C20—H20C⋯Se1ii 0.98 3.07 3.707 (3) 124
C4—H4⋯Cg1iii 0.95 2.66 3.476 (4) 145
C15—H15⋯Cg1iv 0.95 2.90 3.699 (3) 142
C19—H19BCg2v 0.98 2.79 3.627 (3) 144
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y, -z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) & WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Over the past few decades several experimental procedures to rapidly evaluate steric and electronic properties of phoshane ligands have been developed. Highlights from these studies include the measuring of IR stretching frequencies in complexes such as [NiP(CO)3] (Tolman, 1977), trans-[RhCl(CO)(P)2] (Roodt et al., 2003; Otto & Roodt, 2004) and by the measuring of coupling constants between 31P and other NMR active nuclei such as 11B, 195Pt or 77Se (Cowley & Damasco, 1971; Allen & Taylor, 1982; Allen et al., 1985). Recently our research into this area involved the use of seledized phosphane ligands, providing several useful probes such as 1J(31P-77Se) coupling, Se—P bond distance and kinetic reaction rates (Muller et al., 2008) to study the steric and electronic parameters of phosphorus containing ligands. Discussed here, as part of an ongoing study, is the structure of the title compound, which is the selenium derivative of the phosphane PPh2(4-NMe2—C6H4), where Ph = C6H5.

The title compound (see Fig. 1) crystallizes in the monoclinic space group, P 21/c (Z=4), with its molecules adopting a distorted tetrahedral arrangement about the phosphorus atom. The average C—P—C and Se—P—C angles are 105.28 (11)° and 113.40 (8)° respectively. The Se—P distance is 2.1069 (7) Å which is significantly shorter than the 2.1241 (5) Å reported for the analogous SePCy2(4-NMe2—C6H4) compound (Phasha et al., 2012). An increase of 26 Hz in the 1J(31P-77Se) NMR coupling is also observed for the title compound compared to the dicyclohexcyl analogue. This is in accordance with Bent's rule that the s-character of the phosphorus lone pair electrons will decrease with more electron-donating substituents (Bent, 1961).

To describe the steric demand of phosphane ligands a variety of models have been developed, of which the Tolman cone angle (Tolman, 1977) is still the most commonly used method. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å) we calculated an effective cone angle from the geometry found in the crystal structure as 157° (Otto, 2001). This value is comparable to the cone angles calculated for the structure of the free (Lynch et al., 2003) and oxidized (Dreissig & Plieth, 1972) forms of the phosphane (calculated as 158° and 161° respectively). The orientation of the substituents for the oxidized derivative is comparable to that of the title compound, whereas the free phosphane shows substantial differences in its orientations. To illustrate this observation, the coordinates of P and ipso C-atoms of the three structures are superimposed using Mercury (see Fig. 2; Macrae et al., 2006; Weng et al., 2008a; Weng et al., 2008b). The reason for the different substituent orientations are possibly due to different interactions observed to the packing of these structures. It is also interesting to note that coordination of the phosphane to transition metals does not induce significant steric crowding, and hence a smaller cone angle, of the ligand at the coordination sphere. Data extracted for these coordination complexes from the Cambridge Structural Database shows an average cone angle of 159° (Allen, 2002; 9 observations with metals: Au, Pt, Pd, Rh and Cu).

Packing in the crystals is assisted by weak C—H···Se interactions creating linked dimeric units of the title compound. In addition C—H···π interactions are also observed (see table 1 and Fig. 3 for a graphical representation of the interactions).

Related literature top

For investigations into the steric and electronic properties of phosphorus containing ligands, see: Roodt et al. (2003); Otto & Roodt (2004); Muller et al. (2008); Cowley & Damasco (1971); Allen & Taylor (1982); Allen et al. (1985). For the free phosphine related to the title compound, see: Dreissig & Plieth (1972). For the oxide analogue of the title compound, see: Lynch et al. (2003). For related phosphine selenide, see: Phasha et al. (2012). For cone angles, see: Tolman (1977); Otto (2001). For details on the conformational fit of molecules using Mercury, see: Macrae et al. (2006); Weng et al. (2008a,b). For a description of the Cambridge Structural Database, see: Allen (2002). For background on Bent's rule, see: Bent (1961).

Experimental top

[4-(Dimethylamino)phenyl]diphenylphosphane and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the [4-(dimethylamino)phenyl]diphenylphosphane (12.2 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added drop wise (5 min.) to the phosphane solution with stirring at room temperature. Slow evaporation of the solvent afforded the title compound as colourless crystals suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = 33.62 (t, 1J(31P-77Se) = 713 Hz).

Refinement top

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) & WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Conformational similarity between the title compound (blue), the phosphine oxide (red) and the free phosphine (green). The root mean squared deviations (RMSD) to the title compound were 0.0279 Å (oxide derivative) and 0.0473 Å (free phosphine).
[Figure 3] Fig. 3. Packing diagram showing the C—H···Se/π interactions (indicated by dashed lines).
[4-(Dimethylamino)phenyl]diphenylphosphine selenide top
Crystal data top
C20H20NPSeF(000) = 784
Mr = 384.3Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9940 reflections
a = 12.1757 (13) Åθ = 2.3–28.3°
b = 10.6173 (11) ŵ = 2.20 mm1
c = 17.5211 (14) ÅT = 100 K
β = 128.098 (5)°Cuboid, colourless
V = 1782.5 (3) Å30.22 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
4553 independent reflections
Radiation source: sealed tube3798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.4 pixels mm-1θmax = 28.7°, θmin = 2.1°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1414
Tmin = 0.643, Tmax = 0.827l = 2323
31924 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0336P)2 + 3.5217P]
where P = (Fo2 + 2Fc2)/3
4553 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C20H20NPSeV = 1782.5 (3) Å3
Mr = 384.3Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1757 (13) ŵ = 2.20 mm1
b = 10.6173 (11) ÅT = 100 K
c = 17.5211 (14) Å0.22 × 0.11 × 0.09 mm
β = 128.098 (5)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
4553 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3798 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.827Rint = 0.050
31924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
4553 reflectionsΔρmin = 0.72 e Å3
210 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 20 s/frame. A total of 2352 frames were collected with a frame width of 0.5° covering up to θ = 28.66° with 99.3% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.65445 (3)0.81555 (3)0.51517 (2)0.02312 (9)
P10.79548 (6)0.70500 (6)0.51220 (4)0.01475 (13)
N10.5685 (2)0.1943 (2)0.33365 (16)0.0202 (4)
C10.8477 (2)0.7754 (2)0.44440 (17)0.0158 (5)
C20.9861 (3)0.7749 (3)0.4794 (2)0.0284 (6)
H21.05720.7440.54270.034*
C31.0206 (3)0.8195 (3)0.4219 (2)0.0354 (7)
H31.11520.81930.44630.042*
C40.9182 (3)0.8642 (3)0.3296 (2)0.0236 (5)
H40.94210.89450.29060.028*
C50.7798 (3)0.8645 (3)0.29429 (19)0.0222 (5)
H50.70890.8940.23050.027*
C60.7448 (3)0.8218 (3)0.35178 (19)0.0211 (5)
H60.65040.82430.32780.025*
C70.9584 (2)0.6739 (2)0.63238 (17)0.0160 (5)
C81.0104 (3)0.5520 (2)0.66278 (18)0.0179 (5)
H80.96050.48270.62050.021*
C91.1364 (3)0.5315 (3)0.75581 (19)0.0229 (5)
H91.17130.44840.7770.027*
C101.2095 (3)0.6329 (3)0.81646 (19)0.0266 (6)
H101.29530.61910.87910.032*
C111.1586 (3)0.7546 (3)0.78654 (19)0.0267 (6)
H111.20980.82350.82880.032*
C121.0330 (3)0.7762 (3)0.69497 (19)0.0216 (5)
H120.99790.85950.67490.026*
C130.7256 (2)0.5533 (2)0.45680 (17)0.0156 (5)
C140.7489 (2)0.4999 (2)0.39474 (17)0.0163 (5)
H140.8020.54510.38090.02*
C150.6959 (2)0.3825 (2)0.35318 (17)0.0168 (5)
H150.71160.34950.31020.02*
C160.6189 (2)0.3111 (2)0.37367 (17)0.0167 (5)
C170.5955 (2)0.3657 (2)0.43629 (17)0.0179 (5)
H170.54430.32020.45170.022*
C180.6462 (2)0.4845 (2)0.47526 (17)0.0168 (5)
H180.62670.52010.51550.02*
C190.6003 (3)0.1393 (3)0.2728 (2)0.0234 (5)
H19A0.56720.19570.21820.035*
H19B0.55360.05750.24820.035*
H19C0.70130.12780.31130.035*
C200.5016 (3)0.1166 (3)0.3625 (2)0.0278 (6)
H20A0.56680.10170.43260.042*
H20B0.47430.03590.32820.042*
H20C0.41840.15990.34630.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02080 (14)0.02423 (15)0.02604 (15)0.00213 (10)0.01530 (12)0.00154 (11)
P10.0118 (3)0.0177 (3)0.0128 (3)0.0002 (2)0.0066 (2)0.0010 (2)
N10.0205 (10)0.0189 (11)0.0198 (11)0.0039 (8)0.0116 (9)0.0033 (8)
C10.0143 (11)0.0166 (11)0.0149 (11)0.0002 (9)0.0081 (9)0.0001 (9)
C20.0152 (12)0.0482 (18)0.0205 (13)0.0057 (12)0.0103 (11)0.0125 (12)
C30.0191 (13)0.060 (2)0.0305 (16)0.0037 (14)0.0173 (13)0.0129 (15)
C40.0248 (13)0.0277 (14)0.0226 (13)0.0009 (11)0.0168 (12)0.0028 (11)
C50.0216 (12)0.0262 (13)0.0161 (12)0.0016 (10)0.0102 (11)0.0051 (10)
C60.0138 (11)0.0274 (13)0.0186 (12)0.0003 (10)0.0082 (10)0.0033 (10)
C70.0135 (10)0.0210 (12)0.0130 (11)0.0011 (9)0.0078 (9)0.0007 (9)
C80.0152 (11)0.0237 (12)0.0154 (11)0.0014 (9)0.0098 (10)0.0027 (9)
C90.0179 (12)0.0332 (15)0.0192 (13)0.0073 (10)0.0122 (11)0.0094 (11)
C100.0144 (12)0.0492 (18)0.0126 (12)0.0013 (11)0.0065 (10)0.0035 (11)
C110.0200 (13)0.0401 (17)0.0159 (12)0.0093 (12)0.0091 (11)0.0090 (11)
C120.0202 (12)0.0248 (13)0.0196 (13)0.0038 (10)0.0121 (11)0.0028 (10)
C130.0096 (10)0.0197 (11)0.0124 (11)0.0007 (9)0.0043 (9)0.0013 (9)
C140.0122 (10)0.0192 (12)0.0144 (11)0.0005 (9)0.0067 (9)0.0010 (9)
C150.0138 (11)0.0206 (12)0.0142 (11)0.0019 (9)0.0077 (9)0.0003 (9)
C160.0114 (10)0.0183 (11)0.0126 (11)0.0007 (9)0.0035 (9)0.0004 (9)
C170.0149 (11)0.0221 (12)0.0149 (11)0.0033 (9)0.0082 (10)0.0004 (9)
C180.0142 (11)0.0223 (12)0.0119 (11)0.0003 (9)0.0071 (9)0.0007 (9)
C190.0197 (12)0.0226 (13)0.0239 (13)0.0016 (10)0.0114 (11)0.0058 (10)
C200.0345 (15)0.0219 (13)0.0248 (14)0.0096 (11)0.0172 (13)0.0030 (11)
Geometric parameters (Å, º) top
Se1—P12.1069 (7)C9—H90.95
P1—C131.800 (3)C10—C111.388 (4)
P1—C11.818 (3)C10—H100.95
P1—C71.823 (2)C11—C121.392 (4)
N1—C161.369 (3)C11—H110.95
N1—C201.452 (3)C12—H120.95
N1—C191.461 (3)C13—C181.399 (3)
C1—C61.392 (3)C13—C141.402 (3)
C1—C21.394 (3)C14—C151.386 (3)
C2—C31.391 (4)C14—H140.95
C2—H20.95C15—C161.414 (3)
C3—C41.380 (4)C15—H150.95
C3—H30.95C16—C171.417 (4)
C4—C51.390 (4)C17—C181.385 (3)
C4—H40.95C17—H170.95
C5—C61.390 (4)C18—H180.95
C5—H50.95C19—H19A0.98
C6—H60.95C19—H19B0.98
C7—C81.394 (3)C19—H19C0.98
C7—C121.406 (4)C20—H20A0.98
C8—C91.404 (3)C20—H20B0.98
C8—H80.95C20—H20C0.98
C9—C101.383 (4)
C13—P1—C1104.77 (11)C11—C10—H10119.7
C13—P1—C7106.04 (11)C10—C11—C12120.4 (3)
C1—P1—C7105.02 (11)C10—C11—H11119.8
C13—P1—Se1112.98 (8)C12—C11—H11119.8
C1—P1—Se1113.96 (8)C11—C12—C7119.5 (3)
C7—P1—Se1113.26 (8)C11—C12—H12120.2
C16—N1—C20120.4 (2)C7—C12—H12120.2
C16—N1—C19119.9 (2)C18—C13—C14117.8 (2)
C20—N1—C19119.0 (2)C18—C13—P1120.45 (19)
C6—C1—C2119.2 (2)C14—C13—P1121.71 (18)
C6—C1—P1118.79 (18)C15—C14—C13121.4 (2)
C2—C1—P1121.80 (19)C15—C14—H14119.3
C3—C2—C1120.2 (3)C13—C14—H14119.3
C3—C2—H2119.9C14—C15—C16121.0 (2)
C1—C2—H2119.9C14—C15—H15119.5
C4—C3—C2120.5 (3)C16—C15—H15119.5
C4—C3—H3119.8N1—C16—C15120.9 (2)
C2—C3—H3119.8N1—C16—C17121.7 (2)
C3—C4—C5119.5 (3)C15—C16—C17117.3 (2)
C3—C4—H4120.2C18—C17—C16120.8 (2)
C5—C4—H4120.2C18—C17—H17119.6
C6—C5—C4120.4 (2)C16—C17—H17119.6
C6—C5—H5119.8C17—C18—C13121.6 (2)
C4—C5—H5119.8C17—C18—H18119.2
C5—C6—C1120.2 (2)C13—C18—H18119.2
C5—C6—H6119.9N1—C19—H19A109.5
C1—C6—H6119.9N1—C19—H19B109.5
C8—C7—C12119.8 (2)H19A—C19—H19B109.5
C8—C7—P1121.55 (19)N1—C19—H19C109.5
C12—C7—P1118.67 (19)H19A—C19—H19C109.5
C7—C8—C9120.0 (2)H19B—C19—H19C109.5
C7—C8—H8120N1—C20—H20A109.5
C9—C8—H8120N1—C20—H20B109.5
C10—C9—C8119.7 (3)H20A—C20—H20B109.5
C10—C9—H9120.1N1—C20—H20C109.5
C8—C9—H9120.1H20A—C20—H20C109.5
C9—C10—C11120.6 (2)H20B—C20—H20C109.5
C9—C10—H10119.7
C13—P1—C1—C674.9 (2)C9—C10—C11—C120.1 (4)
C7—P1—C1—C6173.6 (2)C10—C11—C12—C70.6 (4)
Se1—P1—C1—C649.0 (2)C8—C7—C12—C110.4 (4)
C13—P1—C1—C299.9 (2)P1—C7—C12—C11179.1 (2)
C7—P1—C1—C211.6 (3)C1—P1—C13—C18165.27 (19)
Se1—P1—C1—C2136.2 (2)C7—P1—C13—C1884.0 (2)
C6—C1—C2—C30.5 (5)Se1—P1—C13—C1840.7 (2)
P1—C1—C2—C3174.3 (3)C1—P1—C13—C1415.1 (2)
C1—C2—C3—C40.3 (5)C7—P1—C13—C1495.7 (2)
C2—C3—C4—C50.1 (5)Se1—P1—C13—C14139.70 (18)
C3—C4—C5—C60.9 (4)C18—C13—C14—C150.3 (3)
C4—C5—C6—C11.7 (4)P1—C13—C14—C15179.32 (18)
C2—C1—C6—C51.4 (4)C13—C14—C15—C161.4 (4)
P1—C1—C6—C5173.5 (2)C20—N1—C16—C15173.9 (2)
C13—P1—C7—C83.9 (2)C19—N1—C16—C153.2 (3)
C1—P1—C7—C8106.7 (2)C20—N1—C16—C176.6 (4)
Se1—P1—C7—C8128.35 (19)C19—N1—C16—C17177.3 (2)
C13—P1—C7—C12176.58 (19)C14—C15—C16—N1179.0 (2)
C1—P1—C7—C1272.8 (2)C14—C15—C16—C171.5 (3)
Se1—P1—C7—C1252.1 (2)N1—C16—C17—C18179.4 (2)
C12—C7—C8—C90.4 (4)C15—C16—C17—C180.1 (3)
P1—C7—C8—C9179.88 (19)C16—C17—C18—C131.9 (4)
C7—C8—C9—C100.9 (4)C14—C13—C18—C172.0 (3)
C8—C9—C10—C110.7 (4)P1—C13—C18—C17177.68 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 refer to the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20A···Se1i0.983.253.833 (3)120
C20—H20C···Se1ii0.983.073.707 (3)124
C4—H4···Cg1iii0.952.663.476 (4)145
C15—H15···Cg1iv0.952.903.699 (3)142
C19—H19B···Cg2v0.982.793.627 (3)144
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y1/2, z1/2; (iv) x, y, z; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20NPSe
Mr384.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1757 (13), 10.6173 (11), 17.5211 (14)
β (°) 128.098 (5)
V3)1782.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.22 × 0.11 × 0.09
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.643, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
31924, 4553, 3798
Rint0.050
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.06
No. of reflections4553
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.72

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) & WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 refer to the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20A···Se1i0.983.253.833 (3)119.9
C20—H20C···Se1ii0.983.073.707 (3)124.1
C4—H4···Cg1iii0.952.663.476 (4)145
C15—H15···Cg1iv0.952.903.699 (3)142
C19—H19B···Cg2v0.982.793.627 (3)144
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y1/2, z1/2; (iv) x, y, z; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, D. W., Nowel, I. W. & Taylor, B. F. (1985). J. Chem. Soc. Dalton Trans. pp. 2505–2508.  CSD CrossRef Web of Science Google Scholar
First citationAllen, D. W. & Taylor, B. F. (1982). J. Chem. Soc. Dalton Trans. pp. 51–54.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBent, H. A. (1961). Chem. Rev. 61, 275–311.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCowley, A. H. & Damasco, M. C. (1971). J. Am. Chem. Soc. 93, 6815–6821.  CrossRef CAS Web of Science Google Scholar
First citationDreissig, W. & Plieth, K. (1972). Z. Kristallogr. 135, 294–307.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (2003). Aust. J. Chem. 56, 1135–1139.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1–10.  Web of Science CrossRef CAS Google Scholar
First citationPhasha, Z. H., Makhoba, S. & Muller, A. (2012). Acta Cryst. E68, o243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3153-o3154
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds