[Journal logo]

Volume 68 
Part 11 
Page m1358  
November 2012  

Received 4 October 2012
Accepted 8 October 2012
Online 13 October 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.007 Å
R = 0.053
wR = 0.145
Data-to-parameter ratio = 14.7
Details
Open access

Potassium N-bromo-2-nitrobenzenesulfonamidate monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

In the title compound, K+·C6H4BrN2O4S-·H2O, the K+ ion is hepta-coordinated by two O atoms from two different water molecules, three sulfonyl O atoms from three N-bromo-2-nitro-benzenesulfonamidate anions and two nitro O atoms from two N-bromo-2-nitro-benzenesulfonamidate anions. The S-N distance of 1.576 (4) Å is consistent with an S=N double bond. The crystal structure is stabilized by intermolecular O-H...N and O-H...Br hydrogen bonds which link the molecules into polymeric layers running parallel to the bc plane.

Related literature

For the preparation of metal salts of N-haloarylsulfonamides, see: Gowda & Mahadevappa (1983[Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For studies on the effect of substituents and metal ions on the structures of N-haloarylsulfonamides, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Gowda et al. (2011a[Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m926.],b[Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m1015.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For positioning of water H atoms, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H4BrN2O4S-·H2O

  • Mr = 337.20

  • Monoclinic, P 21 /c

  • a = 13.034 (2) Å

  • b = 12.815 (2) Å

  • c = 6.7741 (9) Å

  • [beta] = 100.65 (1)°

  • V = 1112.0 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 4.27 mm-1

  • T = 293 K

  • 0.48 × 0.48 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.234, Tmax = 0.428

  • 3896 measured reflections

  • 2236 independent reflections

  • 1847 reflections with I > 2[sigma](I)

  • Rint = 0.042

Refinement
  • R[F2 > 2[sigma](F2)] = 0.053

  • wR(F2) = 0.145

  • S = 1.06

  • 2236 reflections

  • 152 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.79 e Å-3

  • [Delta][rho]min = -1.21 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O5-H51...N1i 0.84 (2) 2.13 (3) 2.926 (5) 157 (5)
O5-H52...Br1ii 0.84 (2) 2.85 (4) 3.509 (4) 137 (4)
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2509 ).


Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a one-time grant to Faculty/Professors under UGC-BSR.

References

George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.  [CSD] [CrossRef] [details]
Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m926.  [CSD] [CrossRef] [details]
Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m1015.  [CSD] [CrossRef] [details]
Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.  [CrossRef] [PubMed] [ChemPort] [ISI]
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.  [ISI] [CrossRef] [ChemPort] [details]
Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.  [CrossRef] [ChemPort] [ISI]
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.  [CrossRef] [ChemPort]


Acta Cryst (2012). E68, m1358  [ doi:10.1107/S1600536812042080 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.