supplementary materials


zs2232 scheme

Acta Cryst. (2012). E68, m1367    [ doi:10.1107/S1600536812041931 ]

[Bis[[mu]-bis(diphenylphosphino)methane-1:2[kappa]2P:P']-bis(nitrito-[kappa]2O,O')]disilver(I) acetonitrile disolvate

X. Yang, X. Huang, Q.-M. Qiu, Q.-H. Jin and C.-L. Zhang

Abstract top

The title complex, [Ag2(NO2)2(C25H22P2)2]·2CH3CN, is a centrosymmetric dimer in which two bis(diphenylphosphino)methane ligands bridge two Ag+ ions, forming an eight-membered ring with a short Ag...Ag separation of 3.1809 (5) Å. The distorted P2O2 coordination of the cation is completed by two O-donors from a symmetric bidentate chelate NO2- anion [Ag-O = 2.550 (3) and 2.567 (3) Å].

Comment top

The coordination chemistry of silver(I) complexes has been extensively studied because of their luminescence properties and potential applications in catalysis, photography, antimicrobial activities and electrochemical processes (Bowmaker et al., 1993; Cui, Hu et al., 2010; Cui, Jin et al., 2010; Jin, Hu et al., 2010; Jin, Song et al., 2010; Meijboom et al., 2009). Recently, some silver(I) complexes containing phosphine ligands and coordinated anions have been reported (Jin et al., 2008; Song et al., 2010). Continuing these efforts, we synthesized a new complex using AgNO2, bis(diphenylphosphino)methane (dppm) and 1,2-bis(4-pyridyl)ethane, the title compound [Ag2(dppm)2(NO2)2] . 2(CH3CN), and the structure is reported here.

In the title compound two silver atoms are bridged by two dppm ligands, giving a centrosymmetric dimer (Fig. 1) having a Ag···Ag distance of 3.1809 (5) Å, which is longer than that found in the analogous complex [Ag2L2](SO3CF3)2 (L = 4'-phenylterpyridine) [2.9452 (4) Å] (Ma et al., 2009). Each of the two NO2- anions chelates an Ag atom with Ag—O bond distances of 2.550 (3) and 2.567 (3) Å, so each Ag atom is tetracoordinated. These values compare with 2.694 (4) and 2.559 (5) Å in a similar crystal [AgNO2(dppm)]2, which was synthesized in methanol (Effendy et al., 2004). In the title complex, the P2—Ag1—P1 angle is 144.82 (3)°, the O1—Ag1—O2 angle is 47.98 (10)°, while the P—Ag1—O angles are in the range of 85.18 (7)–129.41 (7)°, indicating a very distorted tetrahedral stereochemistry about the two silver(I) atoms. The Ag1—P1 and Ag1—P2 bond lengths are 2.4747 (8) and 2.4395 (9) Å, which are both longer than the Ag—P bond found in [Ag(NCS)(C25H22P2)]n (Song et al., 2010), which is analogous to the title compound, synthesized using a similar reaction in the presence of 1,10-phenanthroline.

Related literature top

The coordination chemistry of silver(I) complexes has been extensively studied because of their luminescence properties and antimicrobial activity and potential applications in catalysis, photography and electrochemical processes, see: Bowmaker et al. (1993); Cui, Hu et al. (2010); Cui, Jin et al. (2010); Jin, Hu et al. (2010); Jin, Song et al. (2010); Meijboom et al. (2009). For related structures, see: Effendy et al. (2004); Jin et al. (2008); Ma et al. (2009); Song et al. (2010).

Experimental top

The title complex was synthesized using the following procedure. Bis(diphenylphosphino)methane (dppm, 0.0769 g, 0.2 mmol) was added to a stirred solution of AgNO2 (0.0308 g, 0.2 mmol) and 1,2-bis(4-pyridyl)ethane (0.0368 g, 0.2 mmol) in a mixture of CH3CN (5 ml) and H2O (5 ml). Stirring was continued for 6 h at room temperature, after which the white precipitate was filtered off. Subsequent slow evaporation of the colorless filtrate at ambient temperature resulted in the formation of colorless crystals of the title complex. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in calculated sites with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene) and included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(aromatic and methylene C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular [Ag2(C25H22P2)2(NO2)2].2(CH3CN), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level. For symmetry code (i): -x+1, -y+1, -z+1.
[Bis[µ-bis(diphenylphosphino)methane-1:2κ2P:P']- bis(nitrito-κ2O,O')]disilver(I) acetonitrile disolvate top
Crystal data top
[Ag2(NO2)2(C25H22P2)2]·2C2H3NF(000) = 1176
Mr = 1158.60Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6670 reflections
a = 12.1390 (11) Åθ = 2.5–28.2°
b = 11.1247 (9) ŵ = 0.89 mm1
c = 20.0350 (18) ÅT = 298 K
β = 95.543 (1)°Block, colourless
V = 2692.9 (4) Å30.40 × 0.35 × 0.33 mm
Z = 2
Data collection top
Bruker SMART CCD area detector
diffractometer
4752 independent reflections
Radiation source: fine-focus sealed tube3845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1413
Tmin = 0.717, Tmax = 0.757k = 1313
13205 measured reflectionsl = 2318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.037P)2 + 2.4337P]
where P = (Fo2 + 2Fc2)/3
4752 reflections(Δ/σ)max = 0.002
308 parametersΔρmax = 1.01 e Å3
3 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ag2(NO2)2(C25H22P2)2]·2C2H3NV = 2692.9 (4) Å3
Mr = 1158.60Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.1390 (11) ŵ = 0.89 mm1
b = 11.1247 (9) ÅT = 298 K
c = 20.0350 (18) Å0.40 × 0.35 × 0.33 mm
β = 95.543 (1)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4752 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3845 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.757Rint = 0.035
13205 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.090Δρmax = 1.01 e Å3
S = 1.07Δρmin = 0.46 e Å3
4752 reflectionsAbsolute structure: ?
308 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.43541 (2)0.61579 (2)0.521730 (12)0.03586 (10)
P10.55178 (7)0.70130 (8)0.43866 (4)0.0324 (2)
P20.43562 (7)0.53526 (8)0.63500 (4)0.0327 (2)
N10.2195 (3)0.6845 (4)0.44450 (19)0.0626 (10)
N20.9358 (7)0.8704 (8)0.6794 (5)0.154 (3)
O10.2546 (3)0.7319 (3)0.49890 (16)0.0729 (9)
O20.2823 (2)0.6093 (3)0.42403 (16)0.0627 (7)
C10.5182 (3)0.6221 (3)0.35872 (17)0.0369 (8)
H1A0.55400.66230.32360.044*
H1B0.43890.62470.34670.044*
C20.5182 (3)0.8565 (3)0.41655 (17)0.0373 (8)
C30.4172 (3)0.8834 (3)0.3812 (2)0.0498 (10)
H30.36910.82150.36690.060*
C40.3871 (4)1.0011 (4)0.3668 (2)0.0649 (12)
H40.31981.01770.34240.078*
C50.4561 (5)1.0931 (4)0.3883 (2)0.0682 (14)
H50.43521.17220.37910.082*
C60.5555 (4)1.0693 (4)0.4234 (2)0.0619 (12)
H60.60211.13220.43810.074*
C70.5875 (3)0.9515 (3)0.43718 (19)0.0485 (9)
H70.65610.93590.46050.058*
C80.7019 (3)0.6971 (3)0.45118 (18)0.0412 (8)
C90.7677 (3)0.7389 (4)0.4033 (2)0.0649 (12)
H90.73540.77220.36350.078*
C100.8810 (4)0.7309 (6)0.4150 (3)0.0925 (18)
H100.92500.76020.38310.111*
C110.9295 (4)0.6809 (6)0.4720 (4)0.110 (2)
H111.00630.67550.47880.131*
C120.8664 (5)0.6385 (6)0.5193 (4)0.108 (2)
H120.89970.60320.55820.129*
C130.7513 (4)0.6482 (4)0.5093 (2)0.0674 (13)
H130.70810.62140.54210.081*
C140.5351 (3)0.6152 (3)0.69330 (16)0.0374 (8)
C150.5009 (4)0.7003 (4)0.73770 (18)0.0523 (10)
H150.42600.70990.74250.063*
C160.5793 (4)0.7712 (4)0.7751 (2)0.0650 (12)
H160.55630.82700.80540.078*
C170.6881 (4)0.7596 (4)0.7676 (2)0.0667 (13)
H170.73930.80890.79190.080*
C180.7238 (4)0.6755 (4)0.7245 (2)0.0620 (11)
H180.79900.66680.72020.074*
C190.6475 (3)0.6034 (3)0.6872 (2)0.0479 (9)
H190.67190.54670.65790.057*
C200.3075 (3)0.5396 (3)0.67562 (18)0.0447 (9)
C210.2194 (4)0.6045 (4)0.6469 (2)0.0674 (13)
H210.22350.64280.60600.081*
C220.1227 (4)0.6127 (6)0.6800 (3)0.101 (2)
H220.06350.65910.66180.121*
C230.1159 (5)0.5525 (7)0.7387 (3)0.097 (2)
H230.05090.55610.75960.117*
C240.2022 (5)0.4879 (6)0.7670 (3)0.0867 (17)
H240.19660.44780.80720.104*
C250.2989 (4)0.4813 (4)0.7361 (2)0.0630 (12)
H250.35860.43760.75590.076*
C260.9176 (7)0.9290 (8)0.6327 (6)0.124 (3)
C270.8934 (8)1.0016 (10)0.5727 (5)0.182 (4)
H27A0.84060.96040.54200.273*
H27B0.96031.01470.55170.273*
H27C0.86331.07750.58460.273*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04039 (16)0.03674 (17)0.03093 (15)0.00023 (11)0.00592 (11)0.00355 (11)
P10.0365 (5)0.0316 (5)0.0294 (4)0.0030 (4)0.0052 (4)0.0017 (4)
P20.0383 (5)0.0328 (5)0.0274 (4)0.0006 (4)0.0060 (4)0.0002 (4)
N10.045 (2)0.081 (3)0.060 (2)0.0081 (19)0.0008 (17)0.015 (2)
N20.131 (6)0.147 (7)0.176 (8)0.016 (5)0.029 (6)0.015 (6)
O10.0686 (18)0.088 (2)0.0610 (19)0.0234 (16)0.0020 (16)0.0021 (15)
O20.0537 (17)0.069 (2)0.0640 (18)0.0051 (15)0.0012 (12)0.0018 (13)
C10.0462 (19)0.0323 (18)0.0326 (18)0.0010 (15)0.0057 (15)0.0028 (14)
C20.051 (2)0.0306 (18)0.0323 (18)0.0031 (15)0.0126 (16)0.0013 (14)
C30.058 (2)0.035 (2)0.056 (2)0.0002 (18)0.0018 (19)0.0038 (17)
C40.080 (3)0.050 (3)0.065 (3)0.014 (2)0.008 (2)0.015 (2)
C50.111 (4)0.039 (2)0.060 (3)0.009 (3)0.034 (3)0.013 (2)
C60.096 (4)0.033 (2)0.061 (3)0.015 (2)0.031 (3)0.009 (2)
C70.061 (2)0.044 (2)0.043 (2)0.0107 (19)0.0157 (18)0.0063 (17)
C80.0367 (18)0.040 (2)0.047 (2)0.0064 (15)0.0066 (16)0.0043 (17)
C90.051 (2)0.087 (3)0.059 (3)0.016 (2)0.020 (2)0.007 (2)
C100.057 (3)0.115 (5)0.112 (5)0.020 (3)0.039 (3)0.021 (4)
C110.034 (3)0.118 (5)0.176 (7)0.006 (3)0.009 (4)0.010 (5)
C120.053 (3)0.124 (5)0.139 (6)0.000 (3)0.029 (4)0.038 (4)
C130.049 (2)0.075 (3)0.076 (3)0.004 (2)0.005 (2)0.021 (3)
C140.050 (2)0.0329 (18)0.0287 (17)0.0038 (15)0.0016 (15)0.0020 (14)
C150.067 (3)0.052 (2)0.040 (2)0.004 (2)0.0121 (19)0.0085 (18)
C160.096 (4)0.055 (3)0.043 (2)0.011 (3)0.006 (2)0.017 (2)
C170.082 (3)0.058 (3)0.055 (3)0.017 (2)0.021 (2)0.006 (2)
C180.054 (2)0.065 (3)0.064 (3)0.006 (2)0.011 (2)0.000 (2)
C190.048 (2)0.046 (2)0.048 (2)0.0000 (17)0.0022 (18)0.0030 (18)
C200.048 (2)0.050 (2)0.039 (2)0.0062 (18)0.0155 (17)0.0082 (17)
C210.051 (2)0.095 (4)0.057 (3)0.011 (2)0.014 (2)0.001 (3)
C220.050 (3)0.152 (6)0.104 (5)0.020 (3)0.023 (3)0.006 (4)
C230.073 (4)0.136 (6)0.090 (4)0.018 (4)0.049 (3)0.028 (4)
C240.091 (4)0.106 (4)0.071 (3)0.021 (4)0.049 (3)0.008 (3)
C250.070 (3)0.072 (3)0.051 (3)0.008 (2)0.024 (2)0.006 (2)
C260.106 (6)0.106 (6)0.158 (9)0.002 (5)0.001 (6)0.026 (6)
C270.182 (9)0.176 (10)0.190 (10)0.011 (8)0.035 (8)0.040 (9)
Geometric parameters (Å, º) top
Ag1—P22.4396 (9)C10—H100.9300
Ag1—P12.4747 (9)C11—C121.360 (9)
Ag1—O12.550 (3)C11—H110.9300
Ag1—O22.567 (3)C12—C131.396 (7)
Ag1—Ag1i3.1809 (5)C12—H120.9300
P1—C81.816 (3)C13—H130.9300
P1—C21.819 (3)C14—C191.388 (5)
P1—C11.839 (3)C14—C151.390 (5)
P2—C201.824 (4)C15—C161.397 (6)
P2—C141.827 (3)C15—H150.9300
P2—C1i1.839 (3)C16—C171.350 (6)
N1—O21.229 (4)C16—H160.9300
N1—O11.248 (5)C17—C181.372 (6)
N2—C261.144 (11)C17—H170.9300
C1—P2i1.839 (3)C18—C191.387 (6)
C1—H1A0.9700C18—H180.9300
C1—H1B0.9700C19—H190.9300
C2—C31.388 (5)C20—C211.371 (6)
C2—C71.389 (5)C20—C251.387 (5)
C3—C41.382 (5)C21—C221.405 (6)
C3—H30.9300C21—H210.9300
C4—C51.365 (7)C22—C231.364 (9)
C4—H40.9300C22—H220.9300
C5—C61.363 (7)C23—C241.349 (8)
C5—H50.9300C23—H230.9300
C6—C71.387 (6)C24—C251.381 (6)
C6—H60.9300C24—H240.9300
C7—H70.9300C25—H250.9300
C8—C131.369 (6)C26—C271.455 (12)
C8—C91.387 (5)C27—H27A0.9600
C9—C101.376 (7)C27—H27B0.9600
C9—H90.9300C27—H27C0.9600
C10—C111.353 (9)
P2—Ag1—P1144.82 (3)C11—C10—C9121.2 (5)
P2—Ag1—O1106.05 (8)C11—C10—H10119.4
P1—Ag1—O1102.83 (8)C9—C10—H10119.4
P2—Ag1—O2129.40 (7)C10—C11—C12120.1 (5)
P1—Ag1—O285.19 (7)C10—C11—H11119.9
O1—Ag1—O247.95 (10)C12—C11—H11119.9
P2—Ag1—Ag1i90.06 (2)C11—C12—C13119.8 (6)
P1—Ag1—Ag1i78.39 (2)C11—C12—H12120.1
O1—Ag1—Ag1i143.11 (8)C13—C12—H12120.1
O2—Ag1—Ag1i96.21 (7)C8—C13—C12120.2 (5)
C8—P1—C2104.87 (17)C8—C13—H13119.9
C8—P1—C1104.07 (17)C12—C13—H13119.9
C2—P1—C1102.52 (15)C19—C14—C15118.5 (3)
C8—P1—Ag1121.84 (12)C19—C14—P2119.5 (3)
C2—P1—Ag1113.54 (11)C15—C14—P2121.4 (3)
C1—P1—Ag1107.99 (11)C14—C15—C16119.8 (4)
C20—P2—C14103.94 (16)C14—C15—H15120.1
C20—P2—C1i105.18 (17)C16—C15—H15120.1
C14—P2—C1i103.96 (16)C17—C16—C15120.7 (4)
C20—P2—Ag1118.75 (13)C17—C16—H16119.7
C14—P2—Ag1110.93 (11)C15—C16—H16119.7
C1i—P2—Ag1112.72 (11)C16—C17—C18120.4 (4)
O2—N1—O1114.1 (3)C16—C17—H17119.8
N1—O1—Ag199.1 (2)C18—C17—H17119.8
N1—O2—Ag198.8 (2)C17—C18—C19119.9 (4)
P1—C1—P2i110.85 (18)C17—C18—H18120.1
P1—C1—H1A109.5C19—C18—H18120.1
P2i—C1—H1A109.5C18—C19—C14120.6 (4)
P1—C1—H1B109.5C18—C19—H19119.7
P2i—C1—H1B109.5C14—C19—H19119.7
H1A—C1—H1B108.1C21—C20—C25119.4 (4)
C3—C2—C7117.9 (3)C21—C20—P2119.4 (3)
C3—C2—P1119.7 (3)C25—C20—P2121.1 (3)
C7—C2—P1122.3 (3)C20—C21—C22119.3 (5)
C4—C3—C2120.9 (4)C20—C21—H21120.3
C4—C3—H3119.6C22—C21—H21120.3
C2—C3—H3119.6C23—C22—C21119.9 (6)
C5—C4—C3120.2 (4)C23—C22—H22120.1
C5—C4—H4119.9C21—C22—H22120.1
C3—C4—H4119.9C24—C23—C22121.0 (5)
C6—C5—C4120.2 (4)C24—C23—H23119.5
C6—C5—H5119.9C22—C23—H23119.5
C4—C5—H5119.9C23—C24—C25120.0 (5)
C5—C6—C7120.2 (4)C23—C24—H24120.0
C5—C6—H6119.9C25—C24—H24120.0
C7—C6—H6119.9C24—C25—C20120.4 (5)
C6—C7—C2120.6 (4)C24—C25—H25119.8
C6—C7—H7119.7C20—C25—H25119.8
C2—C7—H7119.7N2—C26—C27178.9 (11)
C13—C8—C9119.1 (4)C26—C27—H27A109.5
C13—C8—P1118.6 (3)C26—C27—H27B109.5
C9—C8—P1122.2 (3)H27A—C27—H27B109.5
C10—C9—C8119.5 (5)C26—C27—H27C109.5
C10—C9—H9120.2H27A—C27—H27C109.5
C8—C9—H9120.2H27B—C27—H27C109.5
P2—Ag1—P1—C811.22 (16)C4—C5—C6—C70.3 (7)
O1—Ag1—P1—C8155.83 (16)C5—C6—C7—C21.1 (6)
O2—Ag1—P1—C8159.29 (16)C3—C2—C7—C60.8 (5)
Ag1i—Ag1—P1—C861.93 (14)P1—C2—C7—C6175.4 (3)
P2—Ag1—P1—C2115.66 (13)C2—P1—C8—C13128.7 (3)
O1—Ag1—P1—C228.95 (15)C1—P1—C8—C13124.0 (3)
O2—Ag1—P1—C273.83 (14)Ag1—P1—C8—C131.9 (4)
Ag1i—Ag1—P1—C2171.19 (13)C2—P1—C8—C952.9 (4)
P2—Ag1—P1—C1131.39 (12)C1—P1—C8—C954.4 (4)
O1—Ag1—P1—C184.01 (14)Ag1—P1—C8—C9176.5 (3)
O2—Ag1—P1—C139.13 (13)C13—C8—C9—C100.1 (7)
Ag1i—Ag1—P1—C158.23 (12)P1—C8—C9—C10178.5 (4)
P1—Ag1—P2—C20156.55 (14)C8—C9—C10—C111.1 (9)
O1—Ag1—P2—C2012.54 (16)C9—C10—C11—C120.6 (11)
O2—Ag1—P2—C2035.73 (17)C10—C11—C12—C130.8 (11)
Ag1i—Ag1—P2—C20133.82 (14)C9—C8—C13—C121.3 (7)
P1—Ag1—P2—C1436.27 (14)P1—C8—C13—C12177.1 (4)
O1—Ag1—P2—C14107.73 (15)C11—C12—C13—C81.8 (9)
O2—Ag1—P2—C14156.00 (15)C20—P2—C14—C19163.7 (3)
Ag1i—Ag1—P2—C14105.91 (12)C1i—P2—C14—C1953.8 (3)
P1—Ag1—P2—C1i79.84 (14)Ag1—P2—C14—C1967.6 (3)
O1—Ag1—P2—C1i136.15 (15)C20—P2—C14—C1525.3 (3)
O2—Ag1—P2—C1i87.89 (16)C1i—P2—C14—C15135.1 (3)
Ag1i—Ag1—P2—C1i10.21 (13)Ag1—P2—C14—C15103.5 (3)
O2—N1—O1—Ag12.0 (4)C19—C14—C15—C160.2 (5)
P2—Ag1—O1—N1127.9 (2)P2—C14—C15—C16171.3 (3)
P1—Ag1—O1—N172.4 (3)C14—C15—C16—C171.2 (6)
O2—Ag1—O1—N11.2 (2)C15—C16—C17—C181.8 (7)
Ag1i—Ag1—O1—N115.2 (3)C16—C17—C18—C191.3 (7)
O1—N1—O2—Ag12.0 (4)C17—C18—C19—C140.2 (6)
P2—Ag1—O2—N173.8 (3)C15—C14—C19—C180.3 (6)
P1—Ag1—O2—N1113.3 (2)P2—C14—C19—C18171.0 (3)
O1—Ag1—O2—N11.2 (2)C14—P2—C20—C21113.3 (3)
Ag1i—Ag1—O2—N1169.0 (2)C1i—P2—C20—C21137.8 (3)
C8—P1—C1—P2i62.7 (2)Ag1—P2—C20—C2110.5 (4)
C2—P1—C1—P2i171.77 (18)C14—P2—C20—C2564.7 (4)
Ag1—P1—C1—P2i68.08 (18)C1i—P2—C20—C2544.2 (4)
C8—P1—C2—C3157.2 (3)Ag1—P2—C20—C25171.5 (3)
C1—P1—C2—C348.7 (3)C25—C20—C21—C221.2 (7)
Ag1—P1—C2—C367.5 (3)P2—C20—C21—C22176.8 (4)
C8—P1—C2—C726.7 (3)C20—C21—C22—C232.5 (9)
C1—P1—C2—C7135.1 (3)C21—C22—C23—C242.1 (10)
Ag1—P1—C2—C7108.7 (3)C22—C23—C24—C250.5 (9)
C7—C2—C3—C40.3 (6)C23—C24—C25—C200.8 (8)
P1—C2—C3—C4176.6 (3)C21—C20—C25—C240.4 (7)
C2—C3—C4—C51.1 (6)P2—C20—C25—C24178.4 (4)
C3—C4—C5—C60.8 (7)
Symmetry code: (i) x+1, y+1, z+1.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (No. 21171119), the National High Technology Research and Development Program 863 of China (2012AA063201), the Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901 and the National 'Eleventh Five-Year' Scientific and Technological Support Plan Subject (2009BAK61B00).

references
References top

Bowmaker, G. A., Effendy, Hanna. J. V., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387–1397.

Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.

Cui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m871.

Cui, L.-N., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2010). Acta Cryst. E66, m969.

Effendy, Hanna, J. V., Marchetti, F., Martini, D., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 1523–1537.

Jin, Q.-H., Hu, K.-Y., Chen, L.-M., Sun, J.-J., Yang, L. & Li, P.-Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 79–81.

Jin, Q.-H., Hu, K.-Y., Song, L.-L., Wang, R., Zhang, C.-L., Zuo, X. & Lu, X.-M. (2010). Polyhedron, 29, 441–445.

Jin, Q.-H., Song, L.-L., Hu, K.-Y., Zhou, L.-L., Zhang, Y.-Y. & Wang, R. (2010). Inorg. Chem. Commun. 13, 62–65.

Ma, Z., Xing, Y. P., Yang, M., Hu, M., Liu, B. Q., Guedes de Silva, M. F. C. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921–2926.

Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Song, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237–m1238.