organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N1-(4-Methyl­phen­yl)piperidine-1,4-dicarboxamide

aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bGM Institute of Technology, Department of Physics, Davangere 577 006, India, cSiddaganga Institute of Technololgy, Department of Physics, Tumkur 572 103, India, dSree Siddaganga College for Women, Tumkur 572 103, India, and eNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 26 October 2012; accepted 21 November 2012; online 24 November 2012)

In the title compound, C14H19N3O2, the heterocycle adopts a 1C4 conformation with the N atom being one of the flap atoms. In the crystal, classical N—H⋯O hydrogen bonds and C—H⋯O contacts connect the mol­ecules into a three-dimensional network.

Related literature

For the pharmacological importance of piperidine and its derivatives, see: Chen et al. (2012[Chen, X., Zhan, P., Pannecouque, C., Balzarini, J., Clercq, E. D. & Liu, X. (2012). Eur. J. Med. Chem. 51, 60-66.]); Boja et al. (2011[Boja, P., Won, S., Suh, D. H., Chu, J., Park, W. K. & Lim, H. (2011). Bull. Korean Chem. Soc. 32, 1249-1252.]); Jakubowska et al. (2012[Jakubowska, A., Kulig, K., Guzior, N. & Malawska, B. (2012). Acta Pol. Pharm. Drug Res. 69, 449-455.]). For puckering analysis of six-membered rings, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3O2

  • Mr = 261.32

  • Monoclinic, P 21 /c

  • a = 5.0102 (1) Å

  • b = 28.6642 (7) Å

  • c = 10.1131 (2) Å

  • β = 103.113 (1)°

  • V = 1414.50 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.42 × 0.25 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.991

  • 27256 measured reflections

  • 3556 independent reflections

  • 3014 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.06

  • 3556 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.834 (17) 2.128 (17) 2.9481 (13) 167.9 (15)
N3—H3A⋯O2ii 0.886 (18) 2.071 (18) 2.9451 (14) 168.9 (15)
N3—H3B⋯O2iii 0.890 (17) 2.034 (17) 2.8875 (13) 160.3 (15)
C3—H3C⋯O1i 0.99 2.41 3.2987 (17) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine and its derivatives are ubiquitous building blocks in the synthesis of pharmaceuticals and fine chemicals (Chen et al., 2012; Boja et al., 2011, Jakubowska et al., 2012). Members of this family have found a wide range of applications in pharmacology and are used as antidepressants (e.g. Paroxetine) and analgesics (e.g. meperidine hydrochloride) or to control attention-deficit hyperactivity disorder (e.g. Methylphenidate). In view of the biological importance, the title compound was synthesized to study its crystal structure.

According to a puckering analysis (Cremer & Pople, 1975; Boeyens, 1978), the piperidine ring adopts a 1C4 conformation with the the nitrogen atom as well as the carbon atom in para position to it acting as the flap atoms (N2CC5). The primary amide group occupies an equatorial position. Due to amide-type resonance, the intracyclic nitrogen atom is present in an almost planar environment, the least-squares plane defined by the urea moiety (N2–C2–O1–N1) featuring the carbon atom as the one atom deviating most from this plane by 0.010 (1) Å (r.m.s. of all fitted atoms = 0.0057 Å). The least-squares planes through the atoms of the heterocycle and the phenyl groups define an angle of 48.15 (7) °. The planes defined by the non-hydrogen atoms of the amide groups intersect the least-squares plane defined by the intracyclic atoms of the heterocycle at angles of 29.22 (15) ° and 71.8 (2) ° with the smaller angle found for the secondary amide group (Fig. 1).

In the crystal, non-classical C–H..O bonds as well as classical hydrogen bonds of the N–H···O type coexist. The former ones take part between one of the intracyclic methylene groups directly bonded to the nitrogen atom of the piperidine moiety and the oxygen atom of the secondary amide group (which also acts as acceptor for one set of N–H···O hydrogen bonds). The hydrogen atoms of the primary amide group, in turn, link the oxygen atom of its own functional group in neighbouring molecules as acceptor. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, these contacts connect the molecules to a three-dimensional network. According to a graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···O contacts is C11(5) on the unitary level while the descriptor found for the hydrogen bonds fostered by the secondary amide group necessitates a C11(4) on the same level. The description of the hydrogen bonding pattern created by the primary amide group is best achieved by a binary descriptor of R24(8). The shortest intercentroid distance between two aromatic systems corersponds to a [100] translation (Fig. 2).

Related literature top

For the pharmacological importance of piperidine and its derivatives, see: Chen et al. (2012); Boja et al. (2011); Jakubowska et al. (2012). For puckering analysis of six-membered rings, see: Cremer & Pople (1975); Boeyens (1978). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

Piperidine-4-carboxamide (10.0 g, 0.078 mol) was dissolved in THF (200 ml). To this triethylamine (23.27 g, 0.23 mol) was added, followed by 1-isocyanato-4-methylbenzene (11.31 g, 0.085 mol). The reaction mixture was stirred at room temperature for 12 h. Completion of the reaction was monitored by TLC. The precipitated solid was filtered, washed with THF and dried under vacuum to get the desired product. The resulting solid was recrystallized from ethanol, yield: 18.5 g (90.77%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms, C–H 0.99 Å for methylene groups and C–H 1.00 Å for methine groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. For reasons of clarity, only a selection of contacts is shown. Blue dashed lines illustrate classical hydrogen bonds of the N–H···O type, green dashed lines depict C–H···O contacts. Symmetry operators: i -x + 1, -y, -z + 1; ii x, -y + 1/2, z - 1/2.
N1-(4-Methylphenyl)piperidine-1,4-dicarboxamide top
Crystal data top
C14H19N3O2F(000) = 560
Mr = 261.32Dx = 1.227 Mg m3
Monoclinic, P21/cMelting point = 523–521 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.0102 (1) ÅCell parameters from 9992 reflections
b = 28.6642 (7) Åθ = 2.2–28.3°
c = 10.1131 (2) ŵ = 0.08 mm1
β = 103.113 (1)°T = 200 K
V = 1414.50 (5) Å3Platelet, colourless
Z = 40.42 × 0.25 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3556 independent reflections
Radiation source: fine-focus sealed tube3014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.966, Tmax = 0.991k = 3838
27256 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3543P]
where P = (Fo2 + 2Fc2)/3
3556 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H19N3O2V = 1414.50 (5) Å3
Mr = 261.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0102 (1) ŵ = 0.08 mm1
b = 28.6642 (7) ÅT = 200 K
c = 10.1131 (2) Å0.42 × 0.25 × 0.11 mm
β = 103.113 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3556 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3014 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.991Rint = 0.020
27256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
3556 reflectionsΔρmin = 0.19 e Å3
185 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1615 (2)0.25725 (3)0.13744 (9)0.0434 (2)
O20.31030 (17)0.05523 (3)0.44661 (12)0.0459 (3)
N10.1515 (2)0.27199 (3)0.35689 (10)0.0330 (2)
H10.155 (3)0.2596 (5)0.4318 (17)0.042 (4)*
N20.3917 (3)0.20893 (4)0.30192 (10)0.0394 (3)
N30.7377 (2)0.03696 (4)0.43233 (13)0.0386 (3)
H3A0.710 (3)0.0081 (6)0.4578 (17)0.049 (4)*
H3B0.898 (3)0.0466 (6)0.4190 (16)0.045 (4)*
C10.2229 (5)0.46134 (6)0.3273 (2)0.0767 (6)
H1A0.07930.48180.30820.115*
H1B0.26130.46980.41500.115*
H1C0.38980.46490.25560.115*
C20.2337 (3)0.24678 (4)0.25859 (11)0.0310 (2)
C30.5469 (3)0.20076 (4)0.44066 (12)0.0368 (3)
H3C0.48670.22290.50310.044*
H3D0.74440.20600.44610.044*
C40.5025 (2)0.15119 (4)0.48297 (12)0.0321 (2)
H4A0.30700.14670.48390.039*
H4B0.61290.14560.57600.039*
C50.5848 (2)0.11644 (4)0.38535 (12)0.0301 (2)
H50.78510.12020.38990.036*
C60.4276 (3)0.12705 (4)0.24063 (13)0.0409 (3)
H6A0.49110.10600.17650.049*
H6B0.22970.12130.23270.049*
C70.4714 (4)0.17763 (4)0.20382 (14)0.0472 (4)
H7A0.66660.18270.20340.057*
H7B0.36040.18450.11170.057*
C80.5337 (2)0.06691 (4)0.42456 (12)0.0305 (2)
C110.0476 (2)0.31796 (4)0.34039 (11)0.0302 (2)
C120.1339 (3)0.33220 (5)0.41605 (15)0.0455 (3)
H120.20110.31040.47130.055*
C130.2187 (4)0.37835 (6)0.41185 (17)0.0544 (4)
H130.34290.38770.46530.065*
C140.1276 (3)0.41117 (5)0.33202 (15)0.0482 (3)
C150.0491 (3)0.39607 (5)0.25471 (15)0.0452 (3)
H150.11150.41770.19720.054*
C160.1383 (3)0.35025 (4)0.25839 (13)0.0383 (3)
H160.26180.34090.20460.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0715 (7)0.0391 (5)0.0191 (4)0.0123 (4)0.0091 (4)0.0027 (3)
O20.0244 (4)0.0361 (5)0.0818 (7)0.0014 (3)0.0219 (4)0.0156 (4)
N10.0484 (6)0.0318 (5)0.0201 (5)0.0058 (4)0.0106 (4)0.0038 (4)
N20.0650 (7)0.0307 (5)0.0221 (5)0.0115 (5)0.0094 (5)0.0012 (4)
N30.0236 (5)0.0294 (5)0.0654 (8)0.0017 (4)0.0159 (5)0.0104 (5)
C10.1017 (15)0.0434 (9)0.0764 (13)0.0245 (9)0.0024 (11)0.0068 (8)
C20.0435 (6)0.0291 (5)0.0209 (5)0.0002 (4)0.0083 (4)0.0012 (4)
C30.0458 (7)0.0307 (6)0.0301 (6)0.0028 (5)0.0011 (5)0.0018 (4)
C40.0347 (6)0.0338 (6)0.0265 (6)0.0043 (4)0.0042 (4)0.0054 (4)
C50.0241 (5)0.0282 (5)0.0410 (6)0.0009 (4)0.0135 (4)0.0063 (4)
C60.0620 (8)0.0311 (6)0.0324 (6)0.0079 (5)0.0162 (6)0.0017 (5)
C70.0824 (10)0.0338 (6)0.0312 (6)0.0140 (6)0.0253 (7)0.0051 (5)
C80.0223 (5)0.0293 (5)0.0412 (6)0.0004 (4)0.0096 (4)0.0059 (4)
C110.0347 (5)0.0326 (5)0.0219 (5)0.0022 (4)0.0033 (4)0.0010 (4)
C120.0540 (8)0.0451 (7)0.0429 (7)0.0076 (6)0.0224 (6)0.0027 (6)
C130.0629 (9)0.0538 (9)0.0502 (9)0.0195 (7)0.0205 (7)0.0047 (7)
C140.0566 (8)0.0371 (7)0.0438 (8)0.0100 (6)0.0032 (6)0.0054 (6)
C150.0570 (8)0.0345 (6)0.0403 (7)0.0013 (6)0.0035 (6)0.0052 (5)
C160.0460 (7)0.0368 (6)0.0330 (6)0.0014 (5)0.0113 (5)0.0029 (5)
Geometric parameters (Å, º) top
O1—C21.2333 (14)C4—H4B0.9900
O2—C81.2360 (13)C5—C81.5114 (15)
N1—C21.3659 (15)C5—C61.5270 (17)
N1—C111.4127 (15)C5—H51.0000
N1—H10.834 (17)C6—C71.5249 (18)
N2—C21.3560 (15)C6—H6A0.9900
N2—C71.4588 (16)C6—H6B0.9900
N2—C31.4605 (15)C7—H7A0.9900
N3—C81.3235 (14)C7—H7B0.9900
N3—H3A0.886 (18)C11—C121.3763 (17)
N3—H3B0.890 (17)C11—C161.3863 (17)
C1—C141.513 (2)C12—C131.387 (2)
C1—H1A0.9800C12—H120.9500
C1—H1B0.9800C13—C141.383 (2)
C1—H1C0.9800C13—H130.9500
C3—C41.5151 (16)C14—C151.377 (2)
C3—H3C0.9900C15—C161.3852 (18)
C3—H3D0.9900C15—H150.9500
C4—C51.5238 (16)C16—H160.9500
C4—H4A0.9900
C2—N1—C11124.85 (10)C6—C5—H5108.5
C2—N1—H1119.3 (11)C7—C6—C5110.61 (11)
C11—N1—H1115.8 (11)C7—C6—H6A109.5
C2—N2—C7120.14 (10)C5—C6—H6A109.5
C2—N2—C3125.68 (10)C7—C6—H6B109.5
C7—N2—C3112.74 (10)C5—C6—H6B109.5
C8—N3—H3A117.0 (11)H6A—C6—H6B108.1
C8—N3—H3B120.2 (10)N2—C7—C6110.00 (10)
H3A—N3—H3B122.7 (15)N2—C7—H7A109.7
C14—C1—H1A109.5C6—C7—H7A109.7
C14—C1—H1B109.5N2—C7—H7B109.7
H1A—C1—H1B109.5C6—C7—H7B109.7
C14—C1—H1C109.5H7A—C7—H7B108.2
H1A—C1—H1C109.5O2—C8—N3122.17 (11)
H1B—C1—H1C109.5O2—C8—C5121.06 (10)
O1—C2—N2122.28 (11)N3—C8—C5116.76 (10)
O1—C2—N1121.69 (11)C12—C11—C16118.82 (11)
N2—C2—N1116.01 (10)C12—C11—N1118.89 (11)
N2—C3—C4109.95 (10)C16—C11—N1122.10 (11)
N2—C3—H3C109.7C11—C12—C13120.15 (13)
C4—C3—H3C109.7C11—C12—H12119.9
N2—C3—H3D109.7C13—C12—H12119.9
C4—C3—H3D109.7C14—C13—C12121.80 (14)
H3C—C3—H3D108.2C14—C13—H13119.1
C3—C4—C5110.57 (10)C12—C13—H13119.1
C3—C4—H4A109.5C15—C14—C13117.23 (13)
C5—C4—H4A109.5C15—C14—C1121.33 (16)
C3—C4—H4B109.5C13—C14—C1121.42 (16)
C5—C4—H4B109.5C14—C15—C16121.86 (13)
H4A—C4—H4B108.1C14—C15—H15119.1
C8—C5—C4110.93 (9)C16—C15—H15119.1
C8—C5—C6110.94 (10)C15—C16—C11120.11 (12)
C4—C5—C6109.52 (9)C15—C16—H16119.9
C8—C5—H5108.5C11—C16—H16119.9
C4—C5—H5108.5
C7—N2—C2—O13.0 (2)C4—C5—C8—O250.08 (16)
C3—N2—C2—O1162.27 (13)C6—C5—C8—O271.88 (15)
C7—N2—C2—N1175.02 (12)C4—C5—C8—N3130.68 (12)
C3—N2—C2—N119.70 (19)C6—C5—C8—N3107.35 (13)
C11—N1—C2—O118.65 (19)C2—N1—C11—C12151.54 (13)
C11—N1—C2—N2163.31 (11)C2—N1—C11—C1633.52 (18)
C2—N2—C3—C4134.00 (13)C16—C11—C12—C131.4 (2)
C7—N2—C3—C459.78 (15)N1—C11—C12—C13173.76 (13)
N2—C3—C4—C557.39 (13)C11—C12—C13—C140.5 (2)
C3—C4—C5—C8178.42 (9)C12—C13—C14—C150.9 (2)
C3—C4—C5—C655.63 (13)C12—C13—C14—C1179.54 (16)
C8—C5—C6—C7177.79 (10)C13—C14—C15—C161.5 (2)
C4—C5—C6—C755.01 (13)C1—C14—C15—C16179.85 (15)
C2—N2—C7—C6133.78 (13)C14—C15—C16—C110.7 (2)
C3—N2—C7—C659.15 (16)C12—C11—C16—C150.76 (19)
C5—C6—C7—N256.27 (16)N1—C11—C16—C15174.18 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.834 (17)2.128 (17)2.9481 (13)167.9 (15)
N3—H3A···O2ii0.886 (18)2.071 (18)2.9451 (14)168.9 (15)
N3—H3B···O2iii0.890 (17)2.034 (17)2.8875 (13)160.3 (15)
C3—H3C···O1i0.992.413.2987 (17)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H19N3O2
Mr261.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.0102 (1), 28.6642 (7), 10.1131 (2)
β (°) 103.113 (1)
V3)1414.50 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.25 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.966, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
27256, 3556, 3014
Rint0.020
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.06
No. of reflections3556
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.19

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.834 (17)2.128 (17)2.9481 (13)167.9 (15)
N3—H3A···O2ii0.886 (18)2.071 (18)2.9451 (14)168.9 (15)
N3—H3B···O2iii0.890 (17)2.034 (17)2.8875 (13)160.3 (15)
C3—H3C···O1i0.992.413.2987 (17)148.5
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a Young scientist award. JMR thanks the Principal of GMIT Davavangere for providing research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBoja, P., Won, S., Suh, D. H., Chu, J., Park, W. K. & Lim, H. (2011). Bull. Korean Chem. Soc. 32, 1249–1252.  CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationChen, X., Zhan, P., Pannecouque, C., Balzarini, J., Clercq, E. D. & Liu, X. (2012). Eur. J. Med. Chem. 51, 60–66.  Web of Science CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJakubowska, A., Kulig, K., Guzior, N. & Malawska, B. (2012). Acta Pol. Pharm. Drug Res. 69, 449–455.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds