supplementary materials


bh2458 scheme

Acta Cryst. (2012). E68, m1451-m1452    [ doi:10.1107/S1600536812044893 ]

(Benzoylacetonato-[kappa]2O,O')dicarbonylrhodium(I)

C. Pretorius and A. Roodt

Abstract top

In the title compound, [Rh(C10H9O2)(CO)2], a distorted square-planar coordination geometry is observed around the RhI atom, formed by the O atoms of the bidentate ligand and two C atoms from the carbonyl ligands. The RhI atom is displaced from the plane through the surrounding atoms by 0.017 Å. In the crystal, C-H...O interaction is observed between a methyl group of the bidentate ligand and a carbonyl O atom. Metallophilic interactions [3.308 (3) and 3.461 (3) Å] between neighbouring RhI atoms are encountered in the crystal, resulting in the formation of a metal chain along the b-axis direction.

Comment top

Rhodium is one of the most studied transition metals due to its importance in various applications including catalysis and biological activity (Dutta & Singh, 1994). It is widely recognized as a good catalyst for several industrial processes such as the Monsanto process (Paulik & Roth, 1968) and hydroformylation (Evans et al., 1968). In turn, rhodium dicarbonyl complexes of the type [Rh(L,L')(CO)2] where (L,L') represents a mono-anionic bidentate ligand have been widely studied as catalyst precursors (Brink et al., 2010).

The structural analysis of the title complex was undertaken to obtain a better understanding of the rhodium-ligand interactions in this type of compound and as a partial study of the effects that the different substituents in non-symmetrical β-diketones have on the kinetics of substitution reactions of these complexes.

Metallophilicity has been defined as the interaction between electron densities of large metal centres with an associated energy in the same order as hydrogen-bonding (Doerrer, 2010). These metallophilic interactions lead to the construction of 1D metal chains and have been widely recognized for other square-planar RhI molecules (Prater et al., 1999; Laurila et al., 2012; Real et al., 1989). The rhodium complex reported here showed stacking in such a way that the rhodium atoms of neighbouring molecules occupy the two remaining pseudo-octahedral positions almost perpendicular to the coordination polyhedron, with Rh···Rh distances of 3.308 (3) and 3.461 (3) Å respectively (see Figure 2). These values are slightly longer than the Rh···Rh distances reported for [Rh(acac)(CO)2] (3.253 and 3.271 Å, Huq & Skapski, 1974). For the benzoyl-1,1,1-trifluoroacetonatodicarbonylrhodium(I) complex these distances were reported as 3.537 Å (Leipoldt et al., 1977). The metallophilic interactions result in the formation of a 1D metal chain along the b-axis in the unit cell. This is consistent with the [Rh(acac)(CO)2] complex and benzoyl-1,1,1-trifluoroacetonatodicarbonylrhodium(I), that also displayed chain growth along the shortest unit cell axis.

A substitutional disorder over two positions was observed for the hydrogen atoms of the methyl group on the pentenone backbone. Intermolecular C10—H10C···O3 hydrogen bonding in the order of 3.427 Å was observed with one of the carbonyl moieties.

Related literature top

For applications of rhodium chemistry, see: Dutta & Singh (1994); Paulik & Roth (1968); Evans et al. (1968). For rhodium dicarbonyl complexes as precursor catalysts, see: Brink et al. (2010). For background to metallophilicity, see: Doerrer (2010). For other metallophilic rhodium complexes, see: Prater et al. (1999); Laurila et al. (2012); Real et al. (1989). For other rhodium dicarbonyl complexes, see: Huq & Skapski (1974); Leipoldt et al. (1977).

Experimental top

[RhCl(CO)2]2 was prepared in situ by refluxing RhCl3.3H2O (0.1014 g, 0.385 mmol) in 2 ml DMF for 30 min. 1-Phenyl-1,3-butanedione (0.0906 g, 0.905 mmol) was added to the cooled DMF solution of [RhCl(CO)2]2. The orange product was precipitated with ice-water and isolated by centrifuge. Recrystallization from diethyl ether yielded pleochroic orange-red crystals suitable for X-ray diffraction. IR (ATR, cm-1): νCO, sym 2066 s, νCO, asym 1999 s.

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5Ueq(carrier C) and 1.2Ueq(carrier C), respectively. The highest residual electron density was located 0.04 Å from C12 and the deepest hole was 0.17 Å from O4.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The metallophilic Rh···Rh interactions result in the formation of a 1D metal chain along the b-axis.
(Benzoylacetonato-κ2O,O')dicarbonylrhodium(I) top
Crystal data top
[Rh(C10H9O2)(CO)2]F(000) = 632
Mr = 320.1Dx = 1.864 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7402 reflections
a = 7.5887 (2) Åθ = 2.7–28.3°
b = 6.7522 (1) ŵ = 1.50 mm1
c = 22.5299 (5) ÅT = 100 K
β = 98.850 (1)°Needle, orange
V = 1140.70 (4) Å30.19 × 0.09 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII KappaCCD
diffractometer
2827 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 1.8°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 98
Tmin = 0.851, Tmax = 0.928l = 2930
15332 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.986P]
where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max = 0.002
154 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.44 e Å3
0 constraints
Crystal data top
[Rh(C10H9O2)(CO)2]V = 1140.70 (4) Å3
Mr = 320.1Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5887 (2) ŵ = 1.50 mm1
b = 6.7522 (1) ÅT = 100 K
c = 22.5299 (5) Å0.19 × 0.09 × 0.05 mm
β = 98.850 (1)°
Data collection top
Bruker APEXII KappaCCD
diffractometer
2827 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2494 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.928Rint = 0.020
15332 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.56 e Å3
S = 1.08Δρmin = 0.44 e Å3
2827 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0248 (2)0.2092 (2)0.36980 (7)0.0130 (3)
C20.1566 (2)0.1653 (2)0.37257 (7)0.0156 (3)
H20.19640.13410.33570.019*
C30.2848 (2)0.1629 (2)0.42418 (8)0.0157 (3)
C40.1396 (2)0.2156 (2)0.30958 (7)0.0132 (3)
C50.0945 (2)0.1102 (2)0.26078 (7)0.0162 (3)
H50.00960.02990.26580.019*
C60.2006 (2)0.1218 (3)0.20490 (8)0.0174 (3)
H60.16810.05050.17190.021*
C70.3540 (2)0.2371 (2)0.19702 (8)0.0171 (3)
H70.42620.24480.15870.02*
C80.4015 (2)0.3411 (3)0.24546 (8)0.0170 (3)
H80.50670.41950.24030.02*
C90.2949 (2)0.3305 (2)0.30142 (7)0.0150 (3)
H90.32780.40190.33440.018*
C100.4773 (2)0.1331 (3)0.41774 (8)0.0201 (4)
H10A0.55070.13510.45750.03*0.5
H10B0.51550.23960.3930.03*0.5
H10C0.49120.00520.39840.03*0.5
H10D0.48760.11820.37510.03*0.5
H10E0.52270.01360.43960.03*0.5
H10F0.54710.24810.43420.03*0.5
C110.1975 (2)0.3058 (3)0.53050 (7)0.0170 (3)
C120.1228 (2)0.2372 (2)0.58225 (8)0.0177 (3)
O10.10332 (17)0.25034 (16)0.41481 (5)0.0152 (2)
O20.25558 (16)0.18797 (19)0.47805 (5)0.0170 (2)
O30.32389 (17)0.3454 (2)0.54935 (6)0.0240 (3)
O40.19329 (19)0.23292 (19)0.63064 (6)0.0245 (3)
Rh10.013973 (17)0.244320 (18)0.503043 (5)0.01307 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0169 (8)0.0101 (7)0.0118 (7)0.0026 (6)0.0018 (6)0.0010 (6)
C20.0181 (8)0.0165 (8)0.0127 (8)0.0007 (6)0.0040 (6)0.0006 (6)
C30.0172 (8)0.0140 (8)0.0160 (8)0.0023 (6)0.0028 (6)0.0020 (6)
C40.0157 (8)0.0130 (7)0.0108 (7)0.0020 (6)0.0018 (6)0.0010 (6)
C50.0181 (8)0.0160 (8)0.0146 (8)0.0024 (6)0.0026 (6)0.0001 (6)
C60.0230 (9)0.0169 (8)0.0124 (8)0.0005 (7)0.0033 (7)0.0023 (6)
C70.0204 (8)0.0172 (8)0.0126 (8)0.0014 (6)0.0006 (6)0.0018 (6)
C80.0169 (8)0.0163 (8)0.0174 (8)0.0024 (6)0.0014 (7)0.0014 (6)
C90.0178 (8)0.0141 (8)0.0138 (8)0.0003 (6)0.0044 (6)0.0012 (6)
C100.0148 (8)0.0282 (9)0.0170 (8)0.0028 (7)0.0019 (7)0.0007 (7)
C110.0239 (9)0.0163 (8)0.0100 (8)0.0033 (7)0.0000 (7)0.0002 (6)
C120.0198 (8)0.0142 (8)0.0192 (9)0.0039 (6)0.0038 (7)0.0002 (6)
O10.0166 (6)0.0180 (6)0.0111 (6)0.0011 (4)0.0021 (5)0.0002 (4)
O20.0159 (6)0.0216 (6)0.0135 (6)0.0026 (5)0.0020 (5)0.0011 (5)
O30.0240 (7)0.0308 (7)0.0183 (6)0.0009 (6)0.0063 (5)0.0014 (6)
O40.0306 (8)0.0264 (7)0.0143 (6)0.0057 (5)0.0033 (6)0.0003 (5)
Rh10.01542 (8)0.01454 (7)0.00917 (7)0.00290 (5)0.00160 (5)0.00006 (5)
Geometric parameters (Å, º) top
C1—O11.283 (2)C8—C91.391 (2)
C1—C21.399 (2)C8—H80.95
C1—C41.496 (2)C9—H90.95
C2—C31.397 (2)C10—H10A0.98
C2—H20.95C10—H10B0.98
C3—O21.278 (2)C10—H10C0.98
C3—C101.504 (2)C10—H10D0.98
C4—C51.396 (2)C10—H10E0.98
C4—C91.400 (2)C10—H10F0.98
C5—C61.388 (2)C11—O31.139 (2)
C5—H50.95C11—Rh11.8539 (18)
C6—C71.389 (2)C12—O41.138 (2)
C6—H60.95C12—Rh11.8480 (19)
C7—C81.391 (2)O1—Rh12.0498 (12)
C7—H70.95O2—Rh12.0349 (12)
O1—C1—C2125.71 (15)H10A—C10—H10B109.5
O1—C1—C4115.70 (15)C3—C10—H10C109.5
C2—C1—C4118.57 (15)H10A—C10—H10C109.5
C3—C2—C1126.44 (15)H10B—C10—H10C109.5
C3—C2—H2116.8C3—C10—H10D109.5
C1—C2—H2116.8H10A—C10—H10D141.1
O2—C3—C2126.05 (16)H10B—C10—H10D56.3
O2—C3—C10114.98 (15)H10C—C10—H10D56.3
C2—C3—C10118.95 (15)C3—C10—H10E109.5
C5—C4—C9118.87 (15)H10A—C10—H10E56.3
C5—C4—C1121.36 (15)H10B—C10—H10E141.1
C9—C4—C1119.77 (15)H10C—C10—H10E56.3
C6—C5—C4120.47 (16)H10D—C10—H10E109.5
C6—C5—H5119.8C3—C10—H10F109.5
C4—C5—H5119.8H10A—C10—H10F56.3
C5—C6—C7120.36 (16)H10B—C10—H10F56.3
C5—C6—H6119.8H10C—C10—H10F141.1
C7—C6—H6119.8H10D—C10—H10F109.5
C6—C7—C8119.72 (16)H10E—C10—H10F109.5
C6—C7—H7120.1O3—C11—Rh1177.49 (15)
C8—C7—H7120.1O4—C12—Rh1178.55 (17)
C9—C8—C7120.02 (16)C1—O1—Rh1125.23 (11)
C9—C8—H8120C3—O2—Rh1125.64 (11)
C7—C8—H8120C12—Rh1—C1187.98 (8)
C8—C9—C4120.54 (15)C12—Rh1—O288.54 (7)
C8—C9—H9119.7C11—Rh1—O2175.85 (6)
C4—C9—H9119.7C12—Rh1—O1179.13 (6)
C3—C10—H10A109.5C11—Rh1—O192.88 (6)
C3—C10—H10B109.5O2—Rh1—O190.61 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.982.573.427 (2)146
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.982.573.427 (2)146.4
Symmetry code: (i) x+1, y, z.
Acknowledgements top

Financial assistance from the University of the Free State Strategic Academic Cluster Initiative (Materials and Nanosciences), SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged.

references
References top

Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). Dalton Trans. 39, 5572–5578.

Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Doerrer, L. H. (2010). Dalton Trans. 39, 3543–3553.

Dutta, D. K. & Singh, M. M. (1994). Transition Met. Chem. 19, 290–292.

Evans, D., Osborn, J. A. & Wilkinson, G. (1968). J. Chem. Soc. A, pp. 3133–3142.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Huq, F. & Skapski, A. C. (1974). J. Cryst. Mol. Struct. 4, 411–418.

Laurila, E., Oresmaa, L., Hassinen, J., Hirva, P. & Haukka, M. (2012). Dalton Trans. In the press. doi:10.1039/C2DT31671D.

Leipoldt, J. G., Bok, L. D. C., Basson, S. S., van Vollenhoven, J. S. & Gerber, T. I. A. (1977). Inorg. Chim. Acta, 25, L63–L64.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Paulik, F. E. & Roth, J. F. (1968). Chem. Commun. (London), pp. 1578–1578.

Prater, M. E., Pence, L. E., Clérac, R., Finniss, G. M., Campana, C., Auban-Senzier, P., Jérome, D., Canadell, E. & Dunbar, K. R. (1999). J. Am. Chem. Soc. 121, 8005–8016.

Real, J., Bayón, J. C., Lahoz, F. J. & López, J. A. (1989). J. Chem. Soc. Chem. Commun. pp. 1889–1890.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.