supplementary materials


br2213 scheme

Acta Cryst. (2012). E68, m1470    [ doi:10.1107/S1600536812045576 ]

cis-Bis{(E)-2-[(2-fluorophenyl)iminomethyl]phenolato-[kappa]2N,O}bis(pyridine-[kappa]N)nickel(II)

M. C. G. Souza, L. da C. Ferreira, N. M. Comerlato, G. B. Ferreira and L. do C. Visentin

Abstract top

The structure of the title compound, [Ni(C13H9FNO)2(C5H5N)2], consists of an NiII atom on a crystallographic center of symmetry, octahedrally bonded through both the N and O atoms to two 2-[(2-fluorophenyl)iminomethyl]phenolate (L) ligands, as well as two pyridine ligands. The F atoms of L are disordered over two positions related by a 180° rotation of the fluorophenyl group around its external C-N bond.

Comment top

N-Salicylidene anilines (Lindeman et al., 1981; Temel et al., 2007; Çelik et al., 2009;) are Schiff bases easily prepared by condensation of salicylaldehyde and an aniline. These molecules act as ligands with transition metals. The NiII cation is octahedrally coordinated by four N and two O atoms with only slight distortion from the ideal coordination geometry. The two independent 2-(E)-(2-fluorophenyliminomethyl)phenolato ligands are bidentate and provide each one N atom from the imine moiety and one phenolato O atom. The coordination is completed by the two pyridine N atoms in trans arrangement. The Ni—N and Ni—O distances (Table 1) are in the typical ranges and like all other interatomic distances are in good agreement with literature data (Dang, et al., 2009; Orpen et al., 1989). The dihedral angle between C8-C13 and C2-C7 phenyl rings is 82.9 (1)°, This compound exhibits a statistical disorder, showing two partial fluorine atoms in unequal proportions (0.700 (4):0.300 (4)), F1 and F1', respectively.

Related literature top

For related nickel compounds, see: Dang et al. (2009); Orpen et al. (1989). For related N-salicylidene anilines, see: Lindeman et al. (1981); Temel et al. (2007); Çelik et al. (2009).

Experimental top

For 2-fluorophenyliminomethyl)phenol ligand (LH). To a solution of 2-hydroxybenzaldehyde (2.6 ml, 25.0 mmol) in 50.0 ml of ethanol was added a mixture of NaOH/HCl (3.0 ml, pH 5.0) and 2-fluoroaniline (2.4 ml, 25.0 mmol). The reaction mixture was kept under reflux for 2 h with continuous stirring. The reaction mixture was cooled to 273 K for 24 h, the yellow precipitate was collected and washed with water and ethanol. Yield: 70%. M.P. 328–330 K; Elemental Analysis, CHN, for C13H10F1N1O1 (Found C, 78.63; H, 5.62; N, 6.96. Calculate: C, 79.16; H, 6.37;N, 7.10%).

For C36H26F2N4O2Ni. A solution of LH (0.430 g, 0.2 mmol), 3.0 ml of MeOH / MeONa (10% w/v) and 5.0 ml of pyridine in 20.0 ml of acetone was stirred for five minutes. Then nickel(II) acetate (0.176 g, 0.1 mmol) was added. The reaction mixture was stirred for 24 h at room temperature. The solution was filtered off and red block crystals suitable for X-ray analysis were obtained by slow evaporation of the solution at room temperature. Yield: 55%. M.P. 569–571 K; Elemental Analysis, CHN, for C36H26F2N4O2Ni (Found C, 67.86; H,4.15; N, 7.38. Calculated: C, 68.39; H, 4.45; N, 8.14%).

Refinement top

H atoms of the unsaturated carbon were positioned geometrically (C–H = 0.93 Å for Csp2 atoms) and treated as riding on their respective C atoms, with Uiso(H) values set at 1.2UeqCsp2. The H9 and H13 atoms were omitted for solve of the disorder in the F1 and F1' atoms attached in C9 and C13.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: PHICHI (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP projection of the title molecule. Thermal ellipsoids are at the 30% probability level.
cis-Bis{(E)-2-[(2-fluorophenyl)iminomethyl]phenolato- κ2N,O}bis(pyridine-κN)nickel(II) top
Crystal data top
[Ni(C13H9FNO)2(C5H5N)2]Z = 1
Mr = 645.32F(000) = 332
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Melting point: 569 K
a = 8.3160 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.344 (2) ÅCell parameters from 370 reflections
c = 11.049 (2) Åθ = 1–27.5°
α = 109.94 (3)°µ = 0.67 mm1
β = 98.53 (3)°T = 295 K
γ = 111.93 (3)°Block, red
V = 786.2 (3) Å30.17 × 0.16 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
2909 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ scans, and ω scans with κθmax = 25.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 109
Tmin = 0.895, Tmax = 0.924k = 1212
11574 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.389P]
where P = (Fo2 + 2Fc2)/3
2909 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C13H9FNO)2(C5H5N)2]γ = 111.93 (3)°
Mr = 645.32V = 786.2 (3) Å3
Triclinic, P1Z = 1
a = 8.3160 (17) ÅMo Kα radiation
b = 10.344 (2) ŵ = 0.67 mm1
c = 11.049 (2) ÅT = 295 K
α = 109.94 (3)°0.17 × 0.16 × 0.12 mm
β = 98.53 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2909 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2652 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.924Rint = 0.026
11574 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Δρmax = 0.41 e Å3
S = 1.05Δρmin = 0.32 e Å3
2909 reflectionsAbsolute structure: ?
219 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.00000.00000.04073 (15)
C10.3568 (3)0.1876 (2)0.0377 (2)0.0434 (5)
C20.4086 (3)0.3195 (2)0.0890 (2)0.0438 (5)
C30.3036 (3)0.3221 (2)0.1802 (2)0.0419 (5)
C40.3826 (4)0.4568 (3)0.3068 (2)0.0563 (6)
H40.32080.46130.37060.068*
C50.5489 (4)0.5805 (3)0.3367 (3)0.0677 (8)
H50.59660.66640.42000.081*
C60.6465 (4)0.5792 (3)0.2444 (3)0.0700 (8)
H60.75650.66420.26440.084*
C70.5771 (3)0.4504 (3)0.1237 (3)0.0598 (6)
H70.64270.44860.06240.072*
C80.1974 (3)0.0607 (2)0.2117 (2)0.0388 (4)
C90.1232 (3)0.0664 (3)0.3351 (2)0.0513 (5)
C100.0995 (4)0.1814 (3)0.4576 (2)0.0645 (7)
H100.05110.18160.53920.077*
C110.1480 (4)0.2945 (3)0.4574 (3)0.0661 (7)
H110.13110.37270.53890.079*
C120.2215 (5)0.2914 (3)0.3360 (3)0.0705 (8)
H120.25600.36710.33560.085*
C130.2449 (4)0.1764 (3)0.2140 (3)0.0574 (6)
C140.0620 (5)0.2436 (3)0.0879 (3)0.0752 (8)
H140.04450.31150.01490.090*
C150.1386 (6)0.3036 (4)0.1603 (4)0.0860 (10)
H150.08360.40910.13630.103*
C160.2949 (4)0.2069 (4)0.2667 (3)0.0716 (8)
H160.34890.24480.31670.086*
C170.3709 (4)0.0527 (4)0.2986 (3)0.0793 (9)
H170.47830.01670.37040.095*
C180.2847 (4)0.0020 (3)0.2217 (3)0.0674 (7)
H180.33680.10340.24500.081*
N10.2146 (2)0.05438 (19)0.08618 (16)0.0381 (4)
N20.1329 (2)0.0937 (2)0.11714 (19)0.0463 (4)
O10.1449 (2)0.21035 (17)0.15535 (15)0.0486 (4)
H10.438 (4)0.204 (3)0.085 (3)0.060 (7)*
F10.0721 (4)0.0386 (3)0.3371 (2)0.0771 (9)0.700 (4)
F1'0.2941 (10)0.1824 (8)0.1059 (5)0.086 (2)0.300 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0372 (2)0.0367 (2)0.0399 (2)0.01420 (16)0.00849 (15)0.01184 (16)
C10.0392 (11)0.0459 (11)0.0413 (11)0.0147 (9)0.0096 (9)0.0210 (9)
C20.0423 (11)0.0365 (10)0.0426 (11)0.0118 (9)0.0013 (9)0.0181 (9)
C30.0453 (11)0.0330 (9)0.0389 (10)0.0185 (9)0.0003 (8)0.0113 (8)
C40.0629 (15)0.0420 (12)0.0468 (12)0.0257 (11)0.0013 (11)0.0051 (10)
C50.0727 (17)0.0331 (11)0.0590 (15)0.0178 (12)0.0163 (13)0.0004 (11)
C60.0599 (15)0.0407 (13)0.0728 (17)0.0015 (11)0.0091 (14)0.0206 (12)
C70.0515 (14)0.0476 (13)0.0606 (15)0.0063 (11)0.0030 (11)0.0258 (11)
C80.0333 (9)0.0387 (10)0.0382 (10)0.0125 (8)0.0109 (8)0.0144 (8)
C90.0509 (13)0.0586 (13)0.0438 (12)0.0271 (11)0.0104 (10)0.0208 (10)
C100.0603 (15)0.0769 (18)0.0370 (12)0.0270 (14)0.0055 (11)0.0124 (11)
C110.0730 (17)0.0494 (13)0.0513 (14)0.0183 (13)0.0222 (13)0.0045 (11)
C120.101 (2)0.0541 (15)0.0755 (18)0.0470 (16)0.0434 (17)0.0295 (13)
C130.0748 (17)0.0597 (14)0.0545 (14)0.0419 (13)0.0264 (12)0.0282 (12)
C140.090 (2)0.0529 (15)0.0689 (17)0.0363 (15)0.0046 (15)0.0190 (13)
C150.117 (3)0.0642 (18)0.083 (2)0.0542 (19)0.012 (2)0.0334 (16)
C160.0747 (18)0.103 (2)0.0810 (19)0.0589 (18)0.0324 (16)0.0635 (18)
C170.0539 (15)0.097 (2)0.086 (2)0.0232 (15)0.0016 (14)0.0591 (19)
C180.0504 (14)0.0648 (16)0.0787 (18)0.0138 (12)0.0018 (13)0.0435 (14)
N10.0367 (8)0.0374 (8)0.0353 (8)0.0162 (7)0.0070 (7)0.0130 (7)
N20.0430 (10)0.0518 (10)0.0495 (10)0.0241 (8)0.0144 (8)0.0252 (8)
O10.0457 (8)0.0416 (8)0.0439 (8)0.0158 (7)0.0116 (6)0.0081 (6)
F10.120 (2)0.0914 (17)0.0525 (13)0.0771 (17)0.0231 (13)0.0362 (12)
F1'0.143 (6)0.110 (5)0.060 (3)0.104 (5)0.038 (3)0.045 (3)
Geometric parameters (Å, º) top
N1—Ni12.128 (2)C8—N11.431 (3)
N2—Ni12.251 (2)C9—C101.390 (3)
Ni1—O1i2.003 (2)C10—C111.373 (4)
Ni1—O12.003 (2)C10—H100.9300
Ni1—N1i2.128 (2)C11—C121.374 (4)
Ni1—N2i2.251 (2)C11—H110.9300
C1—N11.294 (3)C12—C131.388 (4)
C1—C21.444 (3)C12—H120.9300
C1—H10.92 (3)C14—N21.333 (3)
C2—C71.419 (3)C14—C151.383 (4)
C2—C31.428 (3)C14—H140.9300
C3—O11.300 (3)C15—C161.359 (5)
C3—C41.430 (3)C15—H150.9300
C4—C51.384 (4)C16—C171.366 (4)
C4—H40.9300C16—H160.9300
C5—C61.394 (5)C17—C181.384 (4)
C5—H50.9300C17—H170.9300
C6—C71.368 (4)C18—N21.324 (3)
C6—H60.9300C18—H180.9300
C7—H70.9300F1—C91.311 (3)
C8—C91.382 (3)F1'—C131.234 (5)
C8—C131.387 (3)
O1—Ni1—N188.26 (7)C4—C5—C6121.4 (2)
O1i—Ni1—N191.74 (7)C4—C5—H5119.3
O1—Ni1—N1i91.74 (7)C6—C5—H5119.3
O1i—Ni1—N1i88.26 (7)C5—C4—C3121.5 (3)
O1—Ni1—N289.03 (7)C5—C4—H4119.3
O1i—Ni1—N290.97 (7)C3—C4—H4119.3
N1—Ni1—N291.69 (7)C11—C12—C13120.6 (3)
N1i—Ni1—N288.31 (7)C11—C12—H12119.7
O1—Ni1—N2i90.97 (7)C13—C12—H12119.7
O1i—Ni1—N2i89.03 (7)C11—C10—C9119.6 (2)
N1—Ni1—N2i88.31 (7)C11—C10—H10120.2
N1i—Ni1—N2i91.69 (7)C9—C10—H10120.2
C3—O1—Ni1131.3 (1)N2—C18—C17124.2 (3)
C1—N1—C8116.6 (2)N2—C18—H18117.9
C1—N1—Ni1125.0 (2)C17—C18—H18117.9
C8—N1—Ni1118.3 (1)C10—C11—C12119.5 (2)
C18—N2—C14115.9 (2)C10—C11—H11120.2
C18—N2—Ni1121.7 (2)C12—C11—H11120.2
C14—N2—Ni1122.3 (2)C6—C7—C2122.2 (3)
C9—C8—C13117.5 (2)C6—C7—H7118.9
C9—C8—N1121.6 (2)C2—C7—H7118.9
C13—C8—N1120.9 (2)C7—C6—C5118.7 (2)
N1—C1—C2127.1 (2)C7—C6—H6120.7
N1—C1—H1120 (2)C5—C6—H6120.7
C2—C1—H1113 (2)N2—C14—C15123.4 (3)
O1—C3—C2124.2 (2)N2—C14—H14118.3
O1—C3—C4119.2 (2)C15—C14—H14118.3
C2—C3—C4116.6 (2)C15—C16—C17118.4 (3)
C7—C2—C3119.6 (2)C15—C16—H16120.8
C7—C2—C1116.6 (2)C17—C16—H16120.8
C3—C2—C1123.8 (2)C16—C17—C18118.6 (3)
F1—C9—C8119.2 (2)C16—C17—H17120.7
F1—C9—C10118.9 (2)C18—C17—H17120.7
C8—C9—C10121.9 (2)C16—C15—C14119.4 (3)
F1'—C13—C8118.5 (3)C16—C15—H15120.3
F1'—C13—C12120.4 (3)C14—C15—H15120.3
C8—C13—C12120.9 (2)
C8—N1—C1—C2177.3 (2)
Symmetry code: (i) x, y, z.
Acknowledgements top

The authors are grateful to their sponsors, CNPq, CAPES and FAPERJ for financial support and also to the Laboratório de Difração de Raios X, (LDRX), Universidade Federal Fluminense, Brazil, for the diffractometer facility. Thanks are due to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Structural Database. We thank Professor James Lewis Wardell by scientific support of this work.

references
References top

Çelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.

Dang, Y.-Q., Yang, H.-J. & Tian, L.-J. (2009). Acta Cryst. E65, m231.

Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Lindeman, S. V., Andrianov, V. G., Kravcheni, S. G., Potapov, V. M., Potekhin, K. A. & Struchkov, Yu. T. (1981). Zh. Strukt. Khim. 22, 123–131.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.