supplementary materials


bt6862 scheme

Acta Cryst. (2012). E68, m1544    [ doi:10.1107/S1600536812047691 ]

Dimethyl(1,10-phenanthroline-[kappa]2N,N')bis(thiocyanato-[kappa]N)tin(IV)

E. Najafi, M. M. Amini and S. W. Ng

Abstract top

The SnIV atom in the title compound, [Sn(CH3)2(NCS)2(C12H8N2)], is located on a twofold rotation axis in a distorted octahedral enviroment. The methyl groups are trans to each other [C-Sn-C = 175.7 (3)°], whereas the thiocyanate groups are cis to each other.

Comment top

Few amine adducts of dimethyltin dithiocyanate, which exists as a weakly bridged polymeric chain (Britton, 2006), have been reported. The 4,4'-bipyridine adduct is polymeric (Najafi et al., 2011). In the 1,10-phenanthroline adduct (Scheme I, Fig. 1), the SnIV atom is located on a twofold rotation axis in an octahedral enviroment. The methyl groups are trans to each other whereas the thiocyanate groups are cis to each other.

Related literature top

For dimethyltin dithiothiocyanate, see: Britton (2006). For the 4,4'-bipyridine adduct, see: Najafi et al. (2011).

Experimental top

Dimethyltin dithiocyanate (0.27 g, 1 mmol) and 1,10-phenanthroline hydrate (0.19 g, 1 mmol) were loaded into a convection tube; the tube was filled with ethyl alcohol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (CH3)2Sn(NCS)2(C12H8N2) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Dimethyl(1,10-phenanthroline-κ2N,N')bis(thiocyanato- κN)tin(IV) top
Crystal data top
[Sn(CH3)2(NCS)2(C12H8N2)]F(000) = 880
Mr = 445.12Dx = 1.616 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1757 reflections
a = 6.8218 (7) Åθ = 3.2–27.5°
b = 12.9272 (13) ŵ = 1.63 mm1
c = 20.746 (2) ÅT = 295 K
V = 1829.5 (3) Å3Prism, colorless
Z = 40.30 × 0.15 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2116 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1368 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.2°
ω scanh = 68
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1616
Tmin = 0.641, Tmax = 0.923l = 2724
10262 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.5974P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2116 reflectionsΔρmax = 0.51 e Å3
106 parametersΔρmin = 0.63 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (4)
Crystal data top
[Sn(CH3)2(NCS)2(C12H8N2)]V = 1829.5 (3) Å3
Mr = 445.12Z = 4
Orthorhombic, PccnMo Kα radiation
a = 6.8218 (7) ŵ = 1.63 mm1
b = 12.9272 (13) ÅT = 295 K
c = 20.746 (2) Å0.30 × 0.15 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2116 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1368 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.923Rint = 0.055
10262 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.51 e Å3
S = 1.01Δρmin = 0.63 e Å3
2116 reflectionsAbsolute structure: ?
106 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.75000.25000.243352 (18)0.04816 (19)
S10.3311 (2)0.45584 (12)0.09896 (7)0.0957 (6)
N10.5798 (5)0.3037 (3)0.33508 (16)0.0515 (8)
N20.5246 (7)0.3231 (4)0.1785 (2)0.1073 (18)
C10.5903 (7)0.1114 (4)0.2395 (2)0.0746 (14)
H1A0.63370.07100.20340.112*
H1B0.45330.12670.23490.112*
H1C0.61090.07310.27860.112*
C20.4146 (7)0.3576 (4)0.3337 (3)0.0736 (14)
H20.36000.37480.29410.088*
C30.3208 (10)0.3891 (5)0.3898 (4)0.107 (2)
H30.20600.42760.38750.128*
C40.3969 (12)0.3635 (6)0.4470 (4)0.115 (3)
H40.33270.38320.48460.138*
C50.5721 (10)0.3073 (5)0.4510 (3)0.0882 (18)
C60.6600 (6)0.2783 (3)0.3924 (2)0.0556 (11)
C70.6688 (15)0.2767 (9)0.5097 (3)0.142 (5)
H70.61350.29560.54900.170*
C80.4443 (7)0.3778 (4)0.1449 (2)0.0644 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0574 (3)0.0459 (3)0.0411 (3)0.00503 (18)0.0000.000
S10.1188 (12)0.0817 (11)0.0866 (11)0.0168 (9)0.0541 (9)0.0028 (8)
N10.056 (2)0.043 (2)0.055 (2)0.0032 (17)0.0090 (16)0.0054 (17)
N20.127 (4)0.085 (4)0.110 (4)0.010 (3)0.058 (3)0.019 (3)
C10.081 (4)0.065 (3)0.078 (4)0.010 (3)0.014 (2)0.009 (3)
C20.062 (3)0.054 (3)0.105 (4)0.005 (2)0.023 (3)0.010 (3)
C30.085 (4)0.075 (4)0.161 (7)0.002 (3)0.061 (5)0.028 (5)
C40.137 (6)0.096 (5)0.113 (6)0.044 (5)0.087 (5)0.050 (5)
C50.123 (5)0.082 (4)0.059 (3)0.039 (4)0.038 (3)0.022 (3)
C60.071 (3)0.052 (3)0.044 (2)0.021 (2)0.014 (2)0.008 (2)
C70.225 (15)0.156 (12)0.044 (3)0.092 (10)0.035 (4)0.019 (4)
C80.071 (3)0.068 (3)0.054 (3)0.001 (3)0.015 (2)0.009 (2)
Geometric parameters (Å, º) top
Sn1—C12.098 (5)C1—H1C0.9600
Sn1—C1i2.098 (5)C2—C31.388 (8)
Sn1—N2i2.251 (4)C2—H20.9300
Sn1—N22.251 (4)C3—C41.337 (10)
Sn1—N12.335 (3)C3—H30.9300
Sn1—N1i2.335 (3)C4—C51.401 (9)
S1—C81.588 (5)C4—H40.9300
N1—C21.326 (5)C5—C61.405 (6)
N1—C61.350 (5)C5—C71.442 (9)
N2—C81.134 (5)C6—C6i1.430 (9)
C1—H1A0.9600C7—C7i1.31 (2)
C1—H1B0.9600C7—H70.9300
C1—Sn1—C1i175.7 (3)Sn1—C1—H1C109.5
C1—Sn1—N2i88.48 (19)H1A—C1—H1C109.5
C1i—Sn1—N2i88.94 (18)H1B—C1—H1C109.5
C1—Sn1—N288.94 (18)N1—C2—C3121.9 (6)
C1i—Sn1—N288.48 (19)N1—C2—H2119.1
N2i—Sn1—N2106.6 (3)C3—C2—H2119.1
C1—Sn1—N191.51 (16)C4—C3—C2119.5 (7)
C1i—Sn1—N192.01 (15)C4—C3—H3120.2
N2i—Sn1—N1162.09 (16)C2—C3—H3120.2
N2—Sn1—N191.30 (17)C3—C4—C5120.7 (6)
C1—Sn1—N1i92.01 (15)C3—C4—H4119.6
C1i—Sn1—N1i91.51 (16)C5—C4—H4119.6
N2i—Sn1—N1i91.30 (17)C4—C5—C6116.9 (6)
N2—Sn1—N1i162.09 (16)C4—C5—C7125.6 (6)
N1—Sn1—N1i70.80 (18)C6—C5—C7117.6 (7)
C2—N1—C6119.4 (4)N1—C6—C5121.6 (5)
C2—N1—Sn1124.2 (3)N1—C6—C6i118.2 (2)
C6—N1—Sn1116.4 (3)C5—C6—C6i120.2 (4)
C8—N2—Sn1163.6 (5)C7i—C7—C5122.2 (4)
Sn1—C1—H1A109.5C7i—C7—H7118.9
Sn1—C1—H1B109.5C5—C7—H7118.9
H1A—C1—H1B109.5N2—C8—S1178.8 (5)
C1—Sn1—N1—C289.4 (4)Sn1—N1—C2—C3178.9 (4)
C1i—Sn1—N1—C288.1 (4)N1—C2—C3—C40.9 (9)
N2i—Sn1—N1—C2179.2 (5)C2—C3—C4—C51.4 (10)
N2—Sn1—N1—C20.5 (4)C3—C4—C5—C61.1 (9)
N1i—Sn1—N1—C2179.0 (4)C3—C4—C5—C7179.2 (8)
C1—Sn1—N1—C691.6 (3)C2—N1—C6—C50.2 (6)
C1i—Sn1—N1—C690.9 (3)Sn1—N1—C6—C5179.3 (3)
N2i—Sn1—N1—C61.8 (6)C2—N1—C6—C6i178.9 (4)
N2—Sn1—N1—C6179.5 (3)Sn1—N1—C6—C6i0.1 (6)
N1i—Sn1—N1—C60.0 (2)C4—C5—C6—N10.3 (7)
C1—Sn1—N2—C8167.4 (17)C7—C5—C6—N1180.0 (6)
C1i—Sn1—N2—C89.2 (17)C4—C5—C6—C6i179.4 (5)
N2i—Sn1—N2—C879.3 (17)C7—C5—C6—C6i0.8 (9)
N1—Sn1—N2—C8101.1 (17)C4—C5—C7—C7i179.3 (13)
N1i—Sn1—N2—C899.4 (17)C6—C5—C7—C7i0.5 (19)
C6—N1—C2—C30.0 (7)
Symmetry code: (i) x+3/2, y+1/2, z.
Acknowledgements top

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Britton, D. (2006). Acta Cryst. C62, m93–m94.

Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m350.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.