supplementary materials


bt6864 scheme

Acta Cryst. (2012). E68, m1546    [ doi:10.1107/S160053681204771X ]

Di-[mu]2-isopropanolato-octamethylbis([mu]-4-methyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-ido-[kappa]2N1:N2)di-[mu]3-oxido-tetratin(IV)

E. Najafi, M. M. Amini and S. W. Ng

Abstract top

The tetranuclear title compound, [Sn4(CH3)8(C3H7O)2O2(C3H4N3S)2], lies about a center of inversion; the molecule features a three-rung-staircase Sn4O4 core in which two SnIV atoms are bridged by the 4-methyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-ide group. The negatively charged N atom of the group binds to the terminal SnIV atom at a shorter distance [Sn-N = 2.236 (2) Å] compared with the neutral N atom that binds to the central SnIV atom [Sn[leftwards arrow] N = 2.805 (2) Å]. The terminal SnIV atom is five-coordinate in a cis-C2SnNO2 trigonal-bipyramidal geometry [C-Sn-C = 136.4 (1)°], whereas the central SnIV atom is six-coordinate in a C2SnNO3 skew-trazepoidal bipyramidal geometry [C-Sn-C = 145.4 (1)°]. The C atoms of the isopropoxy group are disordered over two positions in a 0.591 (7):0.409 (7) ratio.

Comment top

The title compound (Scheme I, Fig. 1), a distannoxane, was the unexpected product from an attempt at synthesizing a dimethyltin 4-methyl-4H-1,2,4-triazol-3-thiolate that possesses a tin-sulfur linkage. In the reaction of diorganotin oxides with organic acids (particularly carboxylic acids), tetranuclear distannoxanes are sometimes formed; these compounds have four organic groups. In the present reaction, two of the four organic groups are replaced by ethoxide groups.

Tetranuclear Sn4O2(CH3)8(C3H7O)2(C3H4N3S)2 lies about a center-of-inversion; the molecule features a three-rung-staircase Sn4O4 core in which two Sn atoms are bridged by the C3H4N3S triazolate group. The negatively-charged N atom of the group binds to the terminal Sn atom at a shorter distance [Sn–N 2.236 (2) Å] compared with the neutral N atom that binds to the central Sn atom [SnN 2.805 (2) Å]. The terminal Sn atom is five-coordinate in a cis-C3SnNO trigonal bipyramid whereas the central Sn atom is six-coordinate in a C2SnNO3 skew-trazepoidal bipyramidal geometry.

Related literature top

For the [Sn2O(CH3)4(CH3O)(C3H4N3S)]2 homolog, see: Najafi et al. (2011).

Experimental top

Dimethyltin diisothiocyanate (1 mmol), 4-methyl-4H-1,2,4-triazole-3-thiol (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube; several drops of triethylamine were added. The tube was filled with dry 2-propanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The isopropoxy group is disordered over two positions in a 0.591 (7):0.409 ratio in respect of the carbon atoms. Pairs of 1,2-related distances were restrained to within 0.01 Å of each other, and the temperature factors of the primed atoms were set to those of the unprimed ones. The anisotropic temperatures were restrained to be nearly isotropic.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Sn4O2(CH3)8(C3H7O)2(C3H4N3S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
Di-µ2-isopropanolato-octamethylbis(µ-4-methyl-5-sulfanylidene-4,5-dihydro- 1H-1,2,4-triazol-1-ido-κ2N1:N2)di-µ3-oxido- tetratin(IV) top
Crystal data top
[Sn4(CH3)8(C3H7O)2O2(C3H4N3S)2]F(000) = 944
Mr = 973.51Dx = 1.821 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6879 reflections
a = 9.6009 (4) Åθ = 3.1–27.5°
b = 10.0839 (4) ŵ = 2.93 mm1
c = 18.3971 (6) ÅT = 100 K
β = 94.667 (4)°Prism, colorless
V = 1775.20 (12) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4093 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3613 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1312
Tmin = 0.474, Tmax = 0.592l = 2323
17413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0181P)2 + 1.4453P]
where P = (Fo2 + 2Fc2)/3
4093 reflections(Δ/σ)max = 0.003
174 parametersΔρmax = 0.55 e Å3
21 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Sn4(CH3)8(C3H7O)2O2(C3H4N3S)2]V = 1775.20 (12) Å3
Mr = 973.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6009 (4) ŵ = 2.93 mm1
b = 10.0839 (4) ÅT = 100 K
c = 18.3971 (6) Å0.30 × 0.25 × 0.20 mm
β = 94.667 (4)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4093 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3613 reflections with I > 2σ(I)
Tmin = 0.474, Tmax = 0.592Rint = 0.038
17413 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.55 e Å3
S = 1.04Δρmin = 0.49 e Å3
4093 reflectionsAbsolute structure: ?
174 parametersFlack parameter: ?
21 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.652613 (19)0.422511 (18)0.513713 (9)0.01404 (6)
Sn20.52915 (2)0.709776 (19)0.634092 (9)0.01671 (6)
S10.77775 (9)0.79225 (8)0.78514 (4)0.02858 (18)
O10.5301 (2)0.57582 (19)0.55360 (9)0.0169 (4)
O20.3284 (2)0.7351 (2)0.57053 (11)0.0276 (5)
N10.8106 (3)0.5270 (2)0.63540 (12)0.0203 (5)
N20.7409 (2)0.6280 (2)0.66839 (11)0.0177 (5)
N30.9416 (2)0.6003 (2)0.73020 (12)0.0190 (5)
C10.6250 (4)0.2782 (3)0.59418 (17)0.0299 (7)
H1A0.61270.32210.64080.045*
H1B0.70740.22060.59950.045*
H1C0.54210.22480.57970.045*
C20.7985 (3)0.5418 (3)0.46418 (15)0.0246 (7)
H2A0.81230.62490.49140.037*
H2B0.76330.56140.41380.037*
H2C0.88770.49460.46430.037*
C30.6090 (4)0.8948 (3)0.60284 (19)0.0347 (8)
H3A0.53150.95260.58500.052*
H3B0.67180.88140.56410.052*
H3C0.66070.93630.64500.052*
C40.4407 (3)0.6321 (4)0.72647 (15)0.0320 (8)
H4A0.34140.65580.72450.048*
H4B0.48930.66920.77080.048*
H4C0.45030.53540.72700.048*
C50.8202 (3)0.6727 (3)0.72657 (14)0.0191 (6)
C61.0595 (3)0.6163 (4)0.78449 (16)0.0287 (7)
H6A1.12570.54330.78010.043*
H6B1.02590.61530.83340.043*
H6C1.10620.70090.77660.043*
C70.9295 (3)0.5128 (3)0.67331 (15)0.0231 (6)
H70.99900.45000.66290.028*
C80.2044 (6)0.7853 (7)0.5959 (3)0.0377 (16)0.591 (7)
H80.15920.72180.62850.045*0.591 (7)
C90.1067 (12)0.8255 (19)0.5272 (8)0.038 (3)0.591 (7)
H9A0.09340.74910.49440.058*0.591 (7)
H9B0.14970.89830.50170.058*0.591 (7)
H9C0.01610.85420.54240.058*0.591 (7)
C100.242 (2)0.9267 (11)0.6349 (6)0.049 (3)0.591 (7)
H10A0.31900.91480.67260.074*0.591 (7)
H10B0.15970.96050.65720.074*0.591 (7)
H10C0.26970.99010.59840.074*0.591 (7)
C8'0.2376 (9)0.8453 (9)0.5658 (5)0.0377 (16)0.41
H8'0.27230.91850.53530.045*0.409 (7)
C9'0.0850 (17)0.802 (3)0.5403 (13)0.038 (3)0.41
H9D0.08740.72250.51000.058*0.409 (7)
H9E0.03810.87400.51190.058*0.409 (7)
H9F0.03370.78330.58300.058*0.409 (7)
C10'0.222 (3)0.8905 (19)0.6497 (8)0.049 (3)0.41
H10D0.30530.86200.68040.074*0.409 (7)
H10E0.13900.84950.66730.074*0.409 (7)
H10F0.21400.98720.65200.074*0.409 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01409 (10)0.01444 (11)0.01334 (9)0.00295 (7)0.00045 (7)0.00018 (7)
Sn20.01739 (10)0.01539 (11)0.01707 (10)0.00134 (7)0.00036 (8)0.00515 (7)
S10.0253 (4)0.0286 (5)0.0312 (4)0.0025 (3)0.0012 (3)0.0154 (3)
O10.0166 (10)0.0185 (11)0.0149 (9)0.0055 (8)0.0037 (8)0.0056 (7)
O20.0232 (11)0.0292 (13)0.0288 (11)0.0121 (10)0.0074 (9)0.0140 (9)
N10.0213 (13)0.0218 (14)0.0179 (11)0.0058 (10)0.0015 (10)0.0026 (10)
N20.0180 (12)0.0163 (13)0.0185 (11)0.0013 (10)0.0003 (10)0.0041 (9)
N30.0151 (12)0.0247 (14)0.0167 (11)0.0040 (10)0.0009 (9)0.0004 (9)
C10.0340 (18)0.0247 (18)0.0297 (16)0.0028 (14)0.0043 (14)0.0093 (13)
C20.0203 (15)0.0321 (19)0.0217 (14)0.0023 (13)0.0037 (12)0.0051 (13)
C30.041 (2)0.0187 (18)0.0428 (19)0.0071 (15)0.0072 (16)0.0056 (14)
C40.0277 (17)0.048 (2)0.0213 (15)0.0071 (16)0.0084 (13)0.0066 (14)
C50.0172 (14)0.0211 (16)0.0188 (13)0.0040 (12)0.0005 (11)0.0005 (11)
C60.0181 (15)0.039 (2)0.0281 (15)0.0024 (14)0.0070 (13)0.0017 (14)
C70.0211 (15)0.0291 (18)0.0195 (13)0.0050 (13)0.0029 (12)0.0025 (12)
C80.029 (3)0.041 (4)0.042 (4)0.015 (3)0.006 (2)0.018 (2)
C90.024 (4)0.034 (6)0.056 (5)0.016 (3)0.004 (4)0.009 (4)
C100.045 (5)0.039 (7)0.063 (5)0.021 (5)0.009 (4)0.030 (5)
C8'0.029 (3)0.041 (4)0.042 (4)0.015 (3)0.006 (2)0.018 (2)
C9'0.024 (4)0.034 (6)0.056 (5)0.016 (3)0.004 (4)0.009 (4)
C10'0.045 (5)0.039 (7)0.063 (5)0.021 (5)0.009 (4)0.030 (5)
Geometric parameters (Å, º) top
Sn1—O1i2.0633 (18)C3—H3A0.9800
Sn1—C12.108 (3)C3—H3B0.9800
Sn1—C22.109 (3)C3—H3C0.9800
Sn1—O12.1101 (18)C4—H4A0.9800
Sn1—O2i2.2377 (19)C4—H4B0.9800
Sn1—N12.805 (2)C4—H4C0.9800
Sn2—O12.0050 (17)C6—H6A0.9800
Sn2—C42.111 (3)C6—H6B0.9800
Sn2—C32.115 (3)C6—H6C0.9800
Sn2—O22.187 (2)C7—H70.9500
Sn2—N22.236 (2)C8—C91.566 (9)
S1—C51.689 (3)C8—C101.623 (9)
O1—Sn1i2.0633 (18)C8—H81.0000
O2—C81.408 (5)C9—H9A0.9800
O2—C8'1.411 (7)C9—H9B0.9800
O2—Sn1i2.2377 (19)C9—H9C0.9800
N1—C71.296 (4)C10—H10A0.9800
N1—N21.386 (3)C10—H10B0.9800
N2—C51.340 (3)C10—H10C0.9800
N3—C71.367 (4)C8'—C9'1.563 (11)
N3—C51.372 (4)C8'—C10'1.629 (10)
N3—C61.456 (3)C8'—H8'1.0000
C1—H1A0.9800C9'—H9D0.9800
C1—H1B0.9800C9'—H9E0.9800
C1—H1C0.9800C9'—H9F0.9800
C2—H2A0.9800C10'—H10D0.9800
C2—H2B0.9800C10'—H10E0.9800
C2—H2C0.9800C10'—H10F0.9800
O1i—Sn1—C1106.13 (11)Sn2—C3—H3C109.5
O1i—Sn1—C2107.34 (10)H3A—C3—H3C109.5
C1—Sn1—C2145.41 (12)H3B—C3—H3C109.5
O1i—Sn1—O174.45 (8)Sn2—C4—H4A109.5
C1—Sn1—O198.98 (11)Sn2—C4—H4B109.5
C2—Sn1—O198.10 (10)H4A—C4—H4B109.5
O1i—Sn1—O2i72.74 (7)Sn2—C4—H4C109.5
C1—Sn1—O2i91.03 (11)H4A—C4—H4C109.5
C2—Sn1—O2i90.66 (11)H4B—C4—H4C109.5
O1—Sn1—O2i147.18 (7)N2—C5—N3106.6 (2)
O1i—Sn1—N1148.65 (7)N2—C5—S1126.7 (2)
C1—Sn1—N177.85 (10)N3—C5—S1126.6 (2)
C2—Sn1—N178.21 (9)N3—C6—H6A109.5
O1—Sn1—N174.22 (7)N3—C6—H6B109.5
O2i—Sn1—N1138.60 (7)H6A—C6—H6B109.5
O1—Sn2—C4111.77 (11)N3—C6—H6C109.5
O1—Sn2—C3111.73 (11)H6A—C6—H6C109.5
C4—Sn2—C3136.43 (14)H6B—C6—H6C109.5
O1—Sn2—O274.96 (7)N1—C7—N3110.9 (3)
C4—Sn2—O294.53 (11)N1—C7—H7124.5
C3—Sn2—O294.29 (11)N3—C7—H7124.5
O1—Sn2—N284.34 (8)O2—C8—C9106.9 (8)
C4—Sn2—N292.98 (11)O2—C8—C10107.4 (8)
C3—Sn2—N293.49 (12)C9—C8—C10103.1 (10)
O2—Sn2—N2159.29 (8)O2—C8—H8112.9
Sn2—O1—Sn1i112.53 (9)C9—C8—H8112.9
Sn2—O1—Sn1141.87 (9)C10—C8—H8112.9
Sn1i—O1—Sn1105.55 (8)C8—C9—H9A109.5
C8—O2—Sn2126.6 (3)C8—C9—H9B109.5
C8'—O2—Sn2129.7 (4)H9A—C9—H9B109.5
C8—O2—Sn1i127.2 (3)C8—C9—H9C109.5
C8'—O2—Sn1i126.9 (4)H9A—C9—H9C109.5
Sn2—O2—Sn1i99.75 (8)H9B—C9—H9C109.5
C7—N1—N2106.3 (2)C8—C10—H10A109.5
C7—N1—Sn1141.58 (19)C8—C10—H10B109.5
N2—N1—Sn1112.10 (15)H10A—C10—H10B109.5
C5—N2—N1109.5 (2)C8—C10—H10C109.5
C5—N2—Sn2123.10 (19)H10A—C10—H10C109.5
N1—N2—Sn2127.45 (16)H10B—C10—H10C109.5
C7—N3—C5106.7 (2)O2—C8'—C9'111.1 (13)
C7—N3—C6127.5 (3)O2—C8'—C10'105.3 (11)
C5—N3—C6125.8 (2)C9'—C8'—C10'102.0 (16)
Sn1—C1—H1A109.5O2—C8'—H8'112.6
Sn1—C1—H1B109.5C9'—C8'—H8'112.6
H1A—C1—H1B109.5C10'—C8'—H8'112.6
Sn1—C1—H1C109.5C8'—C9'—H9D109.5
H1A—C1—H1C109.5C8'—C9'—H9E109.5
H1B—C1—H1C109.5H9D—C9'—H9E109.5
Sn1—C2—H2A109.5C8'—C9'—H9F109.5
Sn1—C2—H2B109.5H9D—C9'—H9F109.5
H2A—C2—H2B109.5H9E—C9'—H9F109.5
Sn1—C2—H2C109.5C8'—C10'—H10D109.5
H2A—C2—H2C109.5C8'—C10'—H10E109.5
H2B—C2—H2C109.5H10D—C10'—H10E109.5
Sn2—C3—H3A109.5C8'—C10'—H10F109.5
Sn2—C3—H3B109.5H10D—C10'—H10F109.5
H3A—C3—H3B109.5H10E—C10'—H10F109.5
C4—Sn2—O1—Sn1i87.73 (13)O1—Sn1—N1—N21.24 (17)
C3—Sn2—O1—Sn1i89.81 (13)O2i—Sn1—N1—N2179.37 (16)
O2—Sn2—O1—Sn1i1.17 (9)C7—N1—N2—C50.3 (3)
N2—Sn2—O1—Sn1i178.69 (11)Sn1—N1—N2—C5179.15 (17)
C4—Sn2—O1—Sn188.87 (19)C7—N1—N2—Sn2179.8 (2)
C3—Sn2—O1—Sn193.60 (19)Sn1—N1—N2—Sn20.7 (3)
O2—Sn2—O1—Sn1177.76 (18)O1—Sn2—N2—C5179.9 (2)
N2—Sn2—O1—Sn12.09 (16)C4—Sn2—N2—C568.5 (2)
O1i—Sn1—O1—Sn2176.7 (2)C3—Sn2—N2—C568.4 (2)
C1—Sn1—O1—Sn272.38 (18)O2—Sn2—N2—C5179.7 (2)
C2—Sn1—O1—Sn277.43 (18)O1—Sn2—N2—N10.2 (2)
O2i—Sn1—O1—Sn2178.55 (13)C4—Sn2—N2—N1111.4 (2)
N1—Sn1—O1—Sn22.19 (15)C3—Sn2—N2—N1111.8 (2)
O1i—Sn1—O1—Sn1i0.0O2—Sn2—N2—N10.2 (4)
C1—Sn1—O1—Sn1i104.36 (11)N1—N2—C5—N30.5 (3)
C2—Sn1—O1—Sn1i105.84 (11)Sn2—N2—C5—N3179.64 (17)
O2i—Sn1—O1—Sn1i1.82 (19)N1—N2—C5—S1178.2 (2)
N1—Sn1—O1—Sn1i178.92 (10)Sn2—N2—C5—S11.6 (4)
O1—Sn2—O2—C8154.1 (4)C7—N3—C5—N20.5 (3)
C4—Sn2—O2—C842.7 (4)C6—N3—C5—N2179.2 (3)
C3—Sn2—O2—C894.6 (4)C7—N3—C5—S1178.3 (2)
N2—Sn2—O2—C8153.7 (4)C6—N3—C5—S12.1 (4)
O1—Sn2—O2—C8'158.3 (6)N2—N1—C7—N30.0 (3)
C4—Sn2—O2—C8'90.3 (6)Sn1—N1—C7—N3179.2 (2)
C3—Sn2—O2—C8'47.0 (6)C5—N3—C7—N10.3 (3)
N2—Sn2—O2—C8'158.7 (6)C6—N3—C7—N1179.4 (3)
O1—Sn2—O2—Sn1i1.01 (8)C8'—O2—C8—C952.9 (10)
C4—Sn2—O2—Sn1i110.34 (12)Sn2—O2—C8—C9162.6 (6)
C3—Sn2—O2—Sn1i112.37 (12)Sn1i—O2—C8—C951.5 (9)
N2—Sn2—O2—Sn1i0.6 (3)C8'—O2—C8—C1057.2 (10)
O1i—Sn1—N1—C7178.4 (3)Sn2—O2—C8—C1052.5 (8)
C1—Sn1—N1—C777.3 (3)Sn1i—O2—C8—C10161.6 (5)
C2—Sn1—N1—C777.5 (3)C8—O2—C8'—C9'56.5 (13)
O1—Sn1—N1—C7179.6 (3)Sn2—O2—C8'—C9'157.3 (11)
O2i—Sn1—N1—C70.2 (4)Sn1i—O2—C8'—C9'48.5 (14)
O1i—Sn1—N1—N20.8 (3)C8—O2—C8'—C10'53.2 (12)
C1—Sn1—N1—N2101.9 (2)Sn2—O2—C8'—C10'47.6 (13)
C2—Sn1—N1—N2103.28 (19)Sn1i—O2—C8'—C10'158.2 (10)
Symmetry code: (i) x+1, y+1, z+1.
Acknowledgements top

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m242.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.