metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1570-m1571

Tris(1,10-phenanthroline-κ2N,N′)ruthenium(II) bis­­(perchlorate)

aInstitute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland
*Correspondence e-mail: k.brzezinski@uwb.edu.pl

(Received 14 November 2012; accepted 26 November 2012; online 30 November 2012)

The asymmetric unit of the title compound, [Ru(C12H8N2)3](ClO4)2, contains one octahedrally coordinated RuII cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions: two, denoted A and B, are located on the twofold axis while another, denoted C, is positioned in the proximity of the twofold screw axis. Perchlorate anions B and C are severely disordered. The occupancies of the two major conformers of anion B refined to 0.302 (6) and 0.198 (6). Perchlorate ion C was modeled in two alternate conformations which refined to occupancies of 0.552 (10) and 0.448 (10).

Related literature

For the preparation of phenanthroline complexes with transition metals, see: Burstall & Nyholm (1952[Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570-3579.]). For the structures of salts of complexes of ruthenium with phenanthroline, see: Breu & Stoll (1996[Breu, J. & Stoll, A. J. (1996). Acta Cryst. C52, 1174-1177.]); Maloney & MacDonnell (1997[Maloney, D. J. & MacDonnell, F. M. (1997). Acta Cryst. C53, 705-707.]); Otsuka et al. (2001[Otsuka, T., Sekine, A., Fujigasaki, N., Ohashi, Y. & Kaizu, Y. (2001). Inorg. Chem. 40, 3406-3412.]); Wu et al. (2001[Wu, J. Z., Zhou, Z.-Y. & Ji, L. N. (2001). Cryst. Res. Technol. 36, 101-105.]); Ghazzali et al. (2008[Ghazzali, M., Öhrström, L., Lincoln, P. & Langer, V. (2008). Acta Cryst. C64, m243-m245.]). For background to the properties and applications of phenanthroline complexes, see: Juris et al. (1988[Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zalewsky, A. (1988). Coord. Chem. Rev. 84, 85-99.]); D'Angelantonio et al. (1991[D'Angelantonio, M., Mulazzani, Q. G., Venturi, M., Ciano, M. & Hoffman, M. Z. (1991). J. Phys. Chem. 95, 5121-5129.]); Balzani et al. (1996[Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759-772.]); Mills & Williams (1997[Mills, A. & Williams, F. C. (1997). Thin Solid Films, 306, 163-170.]); Yang et al. (1997[Yang, G., Wu, J. Z., Wang, L., Ji, L. N. & Tian, X. (1997). J. Inorg. Biochem. 66, 141-144.]); Miyasaka et al. (2001[Miyasaka, H., Clearc, R., Campos-Fernandez, C. S. & Dunbar, K. R. (2001). Inorg. Chem. 40, 1663-1669.]); Plonska et al. (2002[Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77-84.]); Winkler et al. (2006[Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544-4553.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C12H8N2)3](ClO4)2

  • Mr = 840.57

  • Monoclinic, C 2/c

  • a = 35.408 (7) Å

  • b = 16.106 (3) Å

  • c = 12.056 (2) Å

  • β = 102.22 (3)°

  • V = 6720 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.22 × 0.19 × 0.10 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.859, Tmax = 1.000

  • 28067 measured reflections

  • 6867 independent reflections

  • 5365 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.218

  • S = 1.04

  • 6867 reflections

  • 545 parameters

  • 181 restraints

  • H-atom parameters constrained

  • Δρmax = 2.55 e Å−3

  • Δρmin = −1.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-Phenanthroline (phen), forms complexes with most of transition metals. The polyimine complexes of divalent transition metal cations, such as [RuII(phen)3](ClO4)2 or [RuII(bpy)3](ClO4)2 (bpy-2,2'-bipyridine), are well known potent photosensitizers (Juris et al., 1988). These compounds reveal also other interesting properties due to their redox (Plonska et al., 2002; Winkler et al., 2006) and magnetic properties (Miyasaka et al., 2001), excited-state reactivity (D'Angelantonio et al., 1991), and emission and lifetime characteristics (Juris et al., 1988; Balzani et al., 1996). A high photostability, long excited-state lifetimes and high quantum yields of luminescence, enabled to use them as oxygen optical sensors (Mills et al., 1997). A binding of these complexes to calf thymus DNA has been also investigated (Yang et al., 1997).

The asymmetric unit contains one divalent cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions (Fig. 1). The half-ion of perchlorate A is located on the twofold axis and the complete anion is generated by the symmetry operation. Perchlorate anions, B and C are disordered and each one of them is modeled in two alternative conformations. The occupancy of two major conformers is refined to 0.302 (6) and 0.198 (6) or 0.552 (10) and 0.448 (10) for anion B or C, respectively. Conformers of perchlorate ion B are located on the twofold axis.

Related literature top

For the preparation of phenanthroline complexes with transition metals, see: Burstall et al. (1952). For the structures of salts of complexes of ruthenium with phenanthroline, see: Breu & Stoll (1996); Maloney & MacDonnell (1997); Otsuka et al. (2001); Wu et al. (2001); Ghazzali et al. (2008). For background to the properties and applications of phenanthroline complexes, see: Juris et al. (1988); D'Angelantonio et al. (1991); Balzani et al. (1996); Mills et al. (1997); Yang et al. (1997); Miyasaka et al. (2001); Plonska et al. (2002); Winkler et al. (2006).

Experimental top

The transition metal complex salt, [RuII(phen)3](ClO4)2 was prepared according to the procedure described by Burstall et al., 1952 and was recrystallized from methanol.

Refinement top

The solvent/anion region is highly disordered and the final difference minimum and maximum (-1.15 and 2.62 e Å-3) indicate an its imperfect modeling. The highest difference peak corresponds to solvent accessible void in the crystal lattice. The disordered perchlorate anion B and C are modeled in two alternative conformations with geometric restraints (DFIX and SADI instructions). Additionally, displacement parameter restraints (DELU and ISOR instructions) are applied for anion B. Due to a serious disorder of perchlorate anion C, its oxygen atoms are refined isotropically. All H atoms were located in electron density difference maps. C-bonded hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95 Å and 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. For clarity, labels for atoms in the disordered perchlorate anions B and C are omitted.
Tris(1,10-phenanthroline-κ2N,N')ruthenium(II) bis(perchlorate) top
Crystal data top
[Ru(C12H8N2)3](ClO4)2F(000) = 3392
Mr = 840.57Dx = 1.662 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 28661 reflections
a = 35.408 (7) Åθ = 2.6–26.3°
b = 16.106 (3) ŵ = 0.69 mm1
c = 12.056 (2) ÅT = 100 K
β = 102.22 (3)°Plate, red
V = 6720 (2) Å30.22 × 0.19 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6867 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5365 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4052 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 4444
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2020
Tmin = 0.859, Tmax = 1.000l = 1415
28067 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1194P)2 + 53.7304P]
where P = (Fo2 + 2Fc2)/3
6867 reflections(Δ/σ)max = 0.001
545 parametersΔρmax = 2.55 e Å3
181 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Ru(C12H8N2)3](ClO4)2V = 6720 (2) Å3
Mr = 840.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.408 (7) ŵ = 0.69 mm1
b = 16.106 (3) ÅT = 100 K
c = 12.056 (2) Å0.22 × 0.19 × 0.10 mm
β = 102.22 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6867 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5365 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1.000Rint = 0.039
28067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.071181 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1194P)2 + 53.7304P]
where P = (Fo2 + 2Fc2)/3
6867 reflectionsΔρmax = 2.55 e Å3
545 parametersΔρmin = 1.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
ClA0.50000.08518 (12)1.25000.0409 (4)
O1A0.4920 (2)0.0360 (6)1.1532 (7)0.137 (4)
O2A0.53245 (17)0.1346 (4)1.2483 (7)0.098 (2)
ClBA0.49125 (14)0.4508 (3)0.7332 (5)0.0377 (19)0.302 (6)
O1BA0.45000 (16)0.4625 (5)0.7094 (9)0.048 (3)0.302 (6)
O2BA0.5065 (3)0.4809 (5)0.6390 (9)0.062 (5)0.302 (6)
O3BA0.50000.3639 (3)0.75000.060 (3)0.605 (13)
O4BA0.5085 (3)0.4961 (5)0.8342 (8)0.064 (5)0.302 (6)
ClBB0.50000.4583 (5)0.75000.032 (2)0.395 (13)
O1BB0.5200 (4)0.5161 (10)0.8333 (10)0.046 (4)0.198 (6)
O2BB0.4835 (3)0.3927 (7)0.8057 (11)0.035 (4)0.198 (6)
O3BB0.5266 (3)0.4238 (8)0.6871 (10)0.044 (4)0.198 (6)
O4BB0.4697 (3)0.5022 (12)0.6740 (12)0.047 (4)0.198 (6)
ClCA0.26318 (8)0.5086 (2)0.4468 (2)0.0435 (11)0.552 (10)
O1CA0.2538 (2)0.5648 (4)0.3520 (5)0.064 (3)*0.552 (10)
O2CA0.23054 (19)0.5010 (6)0.4998 (7)0.277 (19)*0.552 (10)
O3CA0.2726 (3)0.4284 (3)0.4073 (7)0.091 (4)*0.552 (10)
O4CA0.29584 (19)0.5403 (5)0.5278 (6)0.092 (4)*0.552 (10)
ClCB0.2615 (2)0.5258 (6)0.4462 (7)0.166 (5)0.448 (10)
O1CB0.2576 (6)0.6144 (5)0.4546 (17)0.149 (9)*0.448 (10)
O2CB0.2292 (2)0.4858 (6)0.4795 (8)0.049 (3)*0.448 (10)
O3CB0.2619 (4)0.5039 (12)0.3306 (8)0.212 (14)*0.448 (10)
O4CB0.2969 (2)0.4984 (13)0.5192 (13)0.117 (6)*0.448 (10)
Ru10.379433 (12)0.21680 (3)0.62688 (4)0.03927 (19)
N80.42571 (13)0.2140 (3)0.7640 (4)0.0407 (11)
N360.33253 (14)0.2267 (3)0.4936 (5)0.0455 (12)
N290.40257 (13)0.2905 (3)0.5175 (4)0.0404 (11)
N220.35194 (13)0.1363 (4)0.7156 (4)0.0475 (12)
C260.33993 (17)0.0117 (5)0.7393 (6)0.0522 (16)
N10.36793 (14)0.3206 (4)0.7139 (5)0.0515 (13)
C310.44900 (18)0.3752 (4)0.4513 (6)0.0509 (15)
H310.47400.39980.46610.061*
C250.31696 (19)0.0092 (5)0.8174 (6)0.0602 (19)
H250.30440.03320.85100.072*
C170.42222 (17)0.0127 (4)0.4478 (5)0.0454 (13)
H170.43730.00550.39210.054*
C70.42374 (17)0.2736 (4)0.8443 (5)0.0468 (15)
C160.41419 (14)0.0922 (4)0.4812 (4)0.0360 (11)
H160.42390.13850.44700.043*
N150.39328 (12)0.1058 (3)0.5599 (4)0.0367 (10)
C350.33975 (18)0.2702 (4)0.4047 (6)0.0510 (16)
C300.43730 (16)0.3264 (3)0.5347 (5)0.0403 (12)
H300.45470.31870.60560.048*
C270.3471 (2)0.0933 (5)0.7063 (6)0.0586 (18)
H270.33580.13840.73860.070*
C110.4786 (2)0.2177 (4)0.9732 (5)0.0539 (17)
H110.49670.21791.04370.065*
C370.29761 (16)0.1926 (4)0.4833 (7)0.0560 (17)
H370.29240.16080.54480.067*
C390.2751 (2)0.2466 (6)0.2965 (8)0.077 (2)
H390.25540.25330.23010.093*
C120.4499 (2)0.2781 (4)0.9494 (6)0.0521 (17)
C400.3120 (2)0.2835 (5)0.3033 (7)0.066 (2)
C210.35678 (15)0.0539 (4)0.6894 (5)0.0441 (13)
C410.3230 (3)0.3303 (6)0.2160 (8)0.084 (3)
H410.30450.33970.14760.101*
C180.40855 (18)0.0547 (4)0.4948 (6)0.0501 (15)
H180.41410.10920.47240.060*
C140.4168 (2)0.4011 (5)0.9966 (7)0.067 (2)
H140.41500.44521.04760.080*
C20.33910 (19)0.3754 (5)0.6835 (8)0.063 (2)
H20.32230.37090.61110.076*
C40.3582 (2)0.4498 (5)0.8596 (8)0.071 (2)
H40.35420.49370.90830.086*
C90.45398 (16)0.1585 (4)0.7900 (5)0.0444 (13)
H90.45620.11730.73540.053*
C130.4454 (2)0.3449 (5)1.0251 (6)0.063 (2)
H130.46280.34931.09640.075*
C60.39295 (17)0.3319 (4)0.8162 (6)0.0493 (15)
C190.38602 (16)0.0429 (4)0.5768 (5)0.0451 (14)
C200.37928 (14)0.0384 (4)0.6065 (5)0.0380 (12)
C380.26831 (19)0.2015 (5)0.3861 (8)0.067 (2)
H380.24380.17640.38250.081*
C240.31276 (18)0.0892 (5)0.8445 (6)0.0612 (19)
H240.29780.10320.89850.073*
C420.3588 (3)0.3619 (6)0.2264 (8)0.079 (2)
H420.36510.39200.16490.095*
C330.3874 (2)0.3510 (4)0.3275 (6)0.0586 (17)
C230.33056 (17)0.1525 (5)0.7930 (6)0.0581 (18)
H230.32730.20850.81370.070*
C280.3692 (2)0.1095 (4)0.6305 (6)0.0595 (18)
H280.37380.16550.61230.071*
C50.3892 (2)0.3961 (5)0.8918 (6)0.0566 (17)
C100.48045 (17)0.1579 (4)0.8934 (5)0.0486 (15)
H100.49980.11610.90870.058*
C320.4242 (2)0.3874 (4)0.3480 (7)0.0584 (17)
H320.43190.42010.29110.070*
C340.37750 (17)0.3047 (4)0.4163 (6)0.0481 (14)
C30.3336 (2)0.4388 (5)0.7571 (8)0.074 (2)
H30.31220.47520.73540.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
ClA0.0410 (10)0.0385 (10)0.0390 (10)0.0000.0006 (8)0.000
O1A0.106 (5)0.182 (9)0.104 (5)0.037 (6)0.021 (4)0.086 (6)
O2A0.059 (3)0.079 (4)0.161 (7)0.008 (3)0.035 (4)0.029 (4)
ClBA0.045 (3)0.035 (3)0.029 (3)0.007 (2)0.002 (3)0.001 (2)
O1BA0.040 (5)0.052 (7)0.055 (7)0.002 (5)0.012 (5)0.014 (6)
O2BA0.053 (7)0.079 (8)0.060 (7)0.014 (7)0.027 (6)0.010 (6)
O3BA0.068 (6)0.043 (4)0.055 (6)0.0000.017 (5)0.000
O4BA0.053 (8)0.074 (8)0.066 (7)0.010 (7)0.012 (6)0.033 (7)
ClBB0.050 (4)0.026 (3)0.016 (3)0.0000.004 (3)0.000
O1BB0.050 (6)0.043 (6)0.043 (5)0.009 (4)0.008 (4)0.007 (4)
O2BB0.033 (6)0.035 (5)0.036 (6)0.002 (4)0.008 (4)0.002 (4)
O3BB0.043 (6)0.046 (6)0.045 (6)0.007 (4)0.015 (4)0.007 (4)
O4BB0.051 (6)0.045 (6)0.043 (5)0.007 (4)0.005 (4)0.006 (4)
ClCA0.0446 (18)0.0573 (19)0.0324 (15)0.0289 (13)0.0166 (12)0.0096 (11)
ClCB0.112 (7)0.231 (10)0.155 (8)0.029 (7)0.029 (6)0.011 (7)
Ru10.0236 (3)0.0438 (3)0.0511 (3)0.00316 (17)0.00957 (19)0.0083 (2)
N80.029 (2)0.052 (3)0.044 (3)0.011 (2)0.0141 (19)0.007 (2)
N360.027 (2)0.046 (3)0.062 (3)0.0037 (19)0.006 (2)0.009 (2)
N290.031 (2)0.036 (2)0.055 (3)0.0039 (18)0.011 (2)0.005 (2)
N220.027 (2)0.062 (3)0.054 (3)0.011 (2)0.011 (2)0.008 (3)
C260.033 (3)0.069 (4)0.052 (4)0.009 (3)0.005 (3)0.012 (3)
N10.033 (2)0.054 (3)0.072 (4)0.006 (2)0.022 (2)0.015 (3)
C310.044 (3)0.036 (3)0.076 (4)0.002 (2)0.020 (3)0.001 (3)
C250.041 (3)0.083 (5)0.056 (4)0.019 (3)0.010 (3)0.008 (4)
C170.039 (3)0.049 (3)0.047 (3)0.009 (3)0.008 (2)0.002 (3)
C70.036 (3)0.057 (4)0.053 (3)0.020 (3)0.021 (3)0.013 (3)
C160.029 (2)0.039 (3)0.038 (3)0.001 (2)0.003 (2)0.001 (2)
N150.026 (2)0.041 (2)0.042 (2)0.0037 (18)0.0020 (18)0.001 (2)
C350.033 (3)0.045 (3)0.070 (4)0.010 (2)0.001 (3)0.008 (3)
C300.035 (3)0.033 (3)0.054 (3)0.001 (2)0.011 (2)0.006 (2)
C270.048 (4)0.059 (4)0.067 (4)0.008 (3)0.008 (3)0.021 (3)
C110.053 (4)0.074 (5)0.037 (3)0.026 (3)0.014 (3)0.002 (3)
C370.025 (3)0.053 (4)0.085 (5)0.003 (3)0.002 (3)0.018 (3)
C390.041 (4)0.076 (5)0.098 (6)0.019 (4)0.021 (4)0.015 (4)
C120.053 (4)0.063 (4)0.045 (3)0.030 (3)0.023 (3)0.009 (3)
C400.044 (4)0.062 (5)0.080 (5)0.011 (3)0.010 (4)0.012 (4)
C210.028 (3)0.054 (4)0.049 (3)0.006 (2)0.004 (2)0.001 (3)
C410.071 (5)0.087 (6)0.079 (6)0.010 (5)0.022 (4)0.013 (5)
C180.043 (3)0.043 (3)0.063 (4)0.011 (3)0.006 (3)0.005 (3)
C140.080 (5)0.068 (5)0.065 (5)0.034 (4)0.044 (4)0.024 (4)
C20.039 (3)0.058 (4)0.098 (6)0.005 (3)0.026 (3)0.023 (4)
C40.063 (5)0.065 (5)0.097 (6)0.023 (4)0.043 (4)0.035 (4)
C90.034 (3)0.055 (4)0.046 (3)0.008 (3)0.012 (2)0.003 (3)
C130.067 (4)0.076 (5)0.052 (4)0.028 (4)0.025 (3)0.021 (4)
C60.041 (3)0.056 (4)0.059 (4)0.016 (3)0.027 (3)0.016 (3)
C190.036 (3)0.042 (3)0.053 (3)0.006 (2)0.001 (2)0.010 (3)
C200.026 (2)0.043 (3)0.042 (3)0.004 (2)0.000 (2)0.000 (2)
C380.031 (3)0.062 (4)0.101 (6)0.011 (3)0.005 (3)0.018 (4)
C240.035 (3)0.094 (6)0.058 (4)0.019 (3)0.019 (3)0.007 (4)
C420.081 (6)0.078 (6)0.071 (5)0.015 (5)0.002 (4)0.022 (4)
C330.057 (4)0.052 (4)0.065 (4)0.012 (3)0.007 (3)0.006 (3)
C230.032 (3)0.079 (5)0.066 (4)0.014 (3)0.018 (3)0.020 (4)
C280.053 (4)0.046 (4)0.074 (5)0.004 (3)0.000 (3)0.014 (3)
C50.051 (4)0.060 (4)0.069 (4)0.017 (3)0.038 (3)0.018 (3)
C100.041 (3)0.065 (4)0.040 (3)0.016 (3)0.007 (2)0.008 (3)
C320.060 (4)0.047 (4)0.072 (5)0.002 (3)0.022 (4)0.008 (3)
C340.037 (3)0.041 (3)0.062 (4)0.007 (2)0.004 (3)0.001 (3)
C30.049 (4)0.059 (4)0.123 (7)0.001 (3)0.040 (4)0.027 (5)
Geometric parameters (Å, º) top
ClA—O1A1.389 (6)C16—N151.339 (7)
ClA—O1Ai1.389 (6)C16—H160.9500
ClA—O2A1.402 (6)N15—C201.363 (7)
ClA—O2Ai1.402 (6)C35—C401.413 (10)
ClBA—O4BA1.4398 (8)C35—C341.427 (9)
ClBA—O1BA1.4399 (8)C30—H300.9500
ClBA—O3BA1.4400 (8)C27—C281.350 (11)
ClBA—O2BA1.4401 (8)C27—H270.9500
ClBB—O1BB1.4399 (8)C11—C101.373 (10)
ClBB—O3BB1.4399 (8)C11—C121.393 (11)
ClBB—O2BB1.4401 (8)C11—H110.9500
ClBB—O4BB1.4402 (11)C37—C381.399 (10)
ClCA—O2CA1.4399 (8)C37—H370.9500
ClCA—O4CA1.4402 (9)C39—C381.366 (13)
ClCA—O3CA1.4405 (8)C39—C401.421 (12)
ClCA—O1CA1.4407 (8)C39—H390.9500
ClCB—O4CB1.4400 (11)C12—C131.440 (10)
ClCB—O1CB1.4400 (8)C40—C411.415 (13)
ClCB—O2CB1.4400 (8)C21—C201.426 (8)
ClCB—O3CB1.4403 (8)C41—C421.347 (13)
Ru1—N222.053 (5)C41—H410.9500
Ru1—N362.058 (5)C18—C191.409 (9)
Ru1—N12.059 (5)C18—H180.9500
Ru1—N152.063 (5)C14—C131.347 (12)
Ru1—N82.067 (5)C14—C51.426 (11)
Ru1—N292.068 (5)C14—H140.9500
N8—C91.329 (8)C2—C31.393 (10)
N8—C71.376 (8)C2—H20.9500
N36—C371.334 (8)C4—C31.365 (12)
N36—C351.349 (9)C4—C51.387 (11)
N29—C301.335 (7)C4—H40.9500
N29—C341.368 (8)C9—C101.392 (8)
N22—C231.346 (8)C9—H90.9500
N22—C211.383 (8)C13—H130.9500
C26—C251.410 (10)C6—C51.403 (9)
C26—C211.410 (9)C19—C201.392 (8)
C26—C271.410 (11)C19—C281.444 (9)
N1—C21.340 (9)C38—H380.9500
N1—C61.370 (8)C24—C231.409 (10)
C31—C321.378 (10)C24—H240.9500
C31—C301.406 (9)C42—C331.421 (11)
C31—H310.9500C42—H420.9500
C25—C241.346 (11)C33—C321.401 (10)
C25—H250.9500C33—C341.409 (10)
C17—C181.361 (9)C23—H230.9500
C17—C161.388 (8)C28—H280.9500
C17—H170.9500C10—H100.9500
C7—C121.405 (9)C32—H320.9500
C7—C61.424 (10)C3—H30.9500
O1A—ClA—O1Ai110.5 (9)C31—C30—H30118.9
O1A—ClA—O2A109.5 (6)C28—C27—C26122.4 (6)
O1Ai—ClA—O2A108.3 (4)C28—C27—H27118.8
O1A—ClA—O2Ai108.3 (4)C26—C27—H27118.8
O1Ai—ClA—O2Ai109.5 (6)C10—C11—C12119.2 (6)
O2A—ClA—O2Ai110.8 (6)C10—C11—H11120.4
O4BA—ClBA—O1BA109.48 (6)C12—C11—H11120.4
O4BA—ClBA—O3BA109.49 (6)N36—C37—C38122.9 (8)
O1BA—ClBA—O3BA109.48 (6)N36—C37—H37118.5
O4BA—ClBA—O2BA109.48 (6)C38—C37—H37118.5
O1BA—ClBA—O2BA109.47 (6)C38—C39—C40119.4 (7)
O3BA—ClBA—O2BA109.44 (6)C38—C39—H39120.3
O1BB—ClBB—O3BB109.7 (2)C40—C39—H39120.3
O1BB—ClBB—O2BB109.7 (2)C11—C12—C7117.5 (6)
O3BB—ClBB—O2BB109.7 (2)C11—C12—C13124.4 (7)
O1BB—ClBB—O4BB108.4 (12)C7—C12—C13118.0 (7)
O3BB—ClBB—O4BB109.7 (2)C35—C40—C41118.4 (7)
O2BB—ClBB—O4BB109.7 (3)C35—C40—C39116.7 (8)
O2CA—ClCA—O4CA109.52 (6)C41—C40—C39125.0 (8)
O2CA—ClCA—O3CA109.50 (6)N22—C21—C26122.5 (6)
O4CA—ClCA—O3CA109.46 (6)N22—C21—C20116.3 (5)
O2CA—ClCA—O1CA109.49 (6)C26—C21—C20121.1 (6)
O4CA—ClCA—O1CA109.44 (6)C42—C41—C40122.2 (7)
O3CA—ClCA—O1CA109.43 (6)C42—C41—H41118.9
O4CB—ClCB—O1CB110.1 (15)C40—C41—H41118.9
O4CB—ClCB—O2CB109.4 (3)C17—C18—C19119.2 (6)
O1CB—ClCB—O2CB109.4 (3)C17—C18—H18120.4
O4CB—ClCB—O3CB109.3 (3)C19—C18—H18120.4
O1CB—ClCB—O3CB109.3 (3)C13—C14—C5121.6 (7)
O2CB—ClCB—O3CB109.3 (3)C13—C14—H14119.2
N22—Ru1—N3693.6 (2)C5—C14—H14119.2
N22—Ru1—N194.6 (2)N1—C2—C3120.6 (8)
N36—Ru1—N196.9 (2)N1—C2—H2119.7
N22—Ru1—N1580.5 (2)C3—C2—H2119.7
N36—Ru1—N1588.90 (18)C3—C4—C5119.2 (7)
N1—Ru1—N15172.6 (2)C3—C4—H4120.4
N22—Ru1—N887.27 (19)C5—C4—H4120.4
N36—Ru1—N8176.5 (2)N8—C9—C10123.2 (6)
N1—Ru1—N879.6 (2)N8—C9—H9118.4
N15—Ru1—N894.60 (18)C10—C9—H9118.4
N22—Ru1—N29172.08 (19)C14—C13—C12121.3 (7)
N36—Ru1—N2979.7 (2)C14—C13—H13119.4
N1—Ru1—N2990.4 (2)C12—C13—H13119.4
N15—Ru1—N2995.09 (18)N1—C6—C5123.4 (6)
N8—Ru1—N2999.70 (19)N1—C6—C7116.3 (5)
C9—N8—C7116.8 (5)C5—C6—C7120.3 (6)
C9—N8—Ru1129.3 (4)C20—C19—C18117.4 (6)
C7—N8—Ru1113.4 (4)C20—C19—C28118.3 (6)
C37—N36—C35117.9 (6)C18—C19—C28124.3 (6)
C37—N36—Ru1128.2 (5)N15—C20—C19123.1 (5)
C35—N36—Ru1113.8 (4)N15—C20—C21117.1 (5)
C30—N29—C34117.9 (5)C19—C20—C21119.8 (5)
C30—N29—Ru1128.8 (4)C39—C38—C37119.6 (7)
C34—N29—Ru1113.3 (4)C39—C38—H38120.2
C23—N22—C21117.3 (6)C37—C38—H38120.2
C23—N22—Ru1129.6 (5)C25—C24—C23120.2 (7)
C21—N22—Ru1113.0 (4)C25—C24—H24119.9
C25—C26—C21117.5 (7)C23—C24—H24119.9
C25—C26—C27125.0 (7)C41—C42—C33121.3 (8)
C21—C26—C27117.5 (6)C41—C42—H42119.4
C2—N1—C6117.9 (6)C33—C42—H42119.4
C2—N1—Ru1128.1 (5)C32—C33—C34117.3 (6)
C6—N1—Ru1114.0 (4)C32—C33—C42124.5 (8)
C32—C31—C30119.8 (6)C34—C33—C42118.1 (7)
C32—C31—H31120.1N22—C23—C24122.4 (7)
C30—C31—H31120.1N22—C23—H23118.8
C24—C25—C26120.0 (7)C24—C23—H23118.8
C24—C25—H25120.0C27—C28—C19120.9 (7)
C26—C25—H25120.0C27—C28—H28119.6
C18—C17—C16120.2 (6)C19—C28—H28119.6
C18—C17—H17119.9C4—C5—C6117.1 (7)
C16—C17—H17119.9C4—C5—C14124.4 (7)
N8—C7—C12123.3 (6)C6—C5—C14118.5 (7)
N8—C7—C6116.3 (6)C11—C10—C9119.9 (7)
C12—C7—C6120.4 (6)C11—C10—H10120.0
N15—C16—C17122.3 (5)C9—C10—H10120.0
N15—C16—H16118.9C31—C32—C33119.4 (7)
C17—C16—H16118.9C31—C32—H32120.3
C16—N15—C20117.7 (5)C33—C32—H32120.3
C16—N15—Ru1129.2 (4)N29—C34—C33123.2 (6)
C20—N15—Ru1113.1 (4)N29—C34—C35116.1 (6)
N36—C35—C40123.5 (6)C33—C34—C35120.7 (6)
N36—C35—C34117.1 (6)C4—C3—C2121.5 (8)
C40—C35—C34119.4 (7)C4—C3—H3119.2
N29—C30—C31122.2 (6)C2—C3—H3119.2
N29—C30—H30118.9
Symmetry code: (i) x+1, y, z+5/2.

Experimental details

Crystal data
Chemical formula[Ru(C12H8N2)3](ClO4)2
Mr840.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)35.408 (7), 16.106 (3), 12.056 (2)
β (°) 102.22 (3)
V3)6720 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.22 × 0.19 × 0.10
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.859, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28067, 6867, 5365
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.218, 1.04
No. of reflections6867
No. of parameters545
No. of restraints181
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1194P)2 + 53.7304P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.55, 1.22

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

 

Acknowledgements

This work was supported by the HOMING PLUS project of the Foundation for Polish Science (MK and PR). The X-ray diffractometer was funded by the EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project: POPW.01.03.00–20–034/09–00.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBalzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759–772.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBreu, J. & Stoll, A. J. (1996). Acta Cryst. C52, 1174–1177.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570–3579.  CrossRef Web of Science Google Scholar
First citationD'Angelantonio, M., Mulazzani, Q. G., Venturi, M., Ciano, M. & Hoffman, M. Z. (1991). J. Phys. Chem. 95, 5121–5129.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhazzali, M., Öhrström, L., Lincoln, P. & Langer, V. (2008). Acta Cryst. C64, m243–m245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJuris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zalewsky, A. (1988). Coord. Chem. Rev. 84, 85–99.  CrossRef CAS Web of Science Google Scholar
First citationMaloney, D. J. & MacDonnell, F. M. (1997). Acta Cryst. C53, 705–707.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMills, A. & Williams, F. C. (1997). Thin Solid Films, 306, 163–170.  CrossRef CAS Web of Science Google Scholar
First citationMiyasaka, H., Clearc, R., Campos-Fernandez, C. S. & Dunbar, K. R. (2001). Inorg. Chem. 40, 1663–1669.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtsuka, T., Sekine, A., Fujigasaki, N., Ohashi, Y. & Kaizu, Y. (2001). Inorg. Chem. 40, 3406–3412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPlonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77–84.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544–4553.  Web of Science CrossRef CAS Google Scholar
First citationWu, J. Z., Zhou, Z.-Y. & Ji, L. N. (2001). Cryst. Res. Technol. 36, 101–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, G., Wu, J. Z., Wang, L., Ji, L. N. & Tian, X. (1997). J. Inorg. Biochem. 66, 141–144.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1570-m1571
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds