supplementary materials


bx2430 scheme

Acta Cryst. (2012). E68, m1570-m1571    [ doi:10.1107/S1600536812048428 ]

Tris(1,10-phenanthroline-[kappa]2N,N')ruthenium(II) bis(perchlorate)

M. Kozlowska, P. Rodziewicz, D. M. Brus, J. Czyrko and K. Brzezinski

Abstract top

The asymmetric unit of the title compound, [Ru(C12H8N2)3](ClO4)2, contains one octahedrally coordinated RuII cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions: two, denoted A and B, are located on the twofold axis while another, denoted C, is positioned in the proximity of the twofold screw axis. Perchlorate anions B and C are severely disordered. The occupancies of the two major conformers of anion B refined to 0.302 (6) and 0.198 (6). Perchlorate ion C was modeled in two alternate conformations which refined to occupancies of 0.552 (10) and 0.448 (10).

Comment top

1,10-Phenanthroline (phen), forms complexes with most of transition metals. The polyimine complexes of divalent transition metal cations, such as [RuII(phen)3](ClO4)2 or [RuII(bpy)3](ClO4)2 (bpy-2,2'-bipyridine), are well known potent photosensitizers (Juris et al., 1988). These compounds reveal also other interesting properties due to their redox (Plonska et al., 2002; Winkler et al., 2006) and magnetic properties (Miyasaka et al., 2001), excited-state reactivity (D'Angelantonio et al., 1991), and emission and lifetime characteristics (Juris et al., 1988; Balzani et al., 1996). A high photostability, long excited-state lifetimes and high quantum yields of luminescence, enabled to use them as oxygen optical sensors (Mills et al., 1997). A binding of these complexes to calf thymus DNA has been also investigated (Yang et al., 1997).

The asymmetric unit contains one divalent cation of the ruthenium-phenanthroline complex and three differently occupied perchlorate anions (Fig. 1). The half-ion of perchlorate A is located on the twofold axis and the complete anion is generated by the symmetry operation. Perchlorate anions, B and C are disordered and each one of them is modeled in two alternative conformations. The occupancy of two major conformers is refined to 0.302 (6) and 0.198 (6) or 0.552 (10) and 0.448 (10) for anion B or C, respectively. Conformers of perchlorate ion B are located on the twofold axis.

Related literature top

For the preparation of phenanthroline complexes with transition metals, see: Burstall et al. (1952). For the structures of salts of complexes of ruthenium with phenanthroline, see: Breu & Stoll (1996); Maloney & MacDonnell (1997); Otsuka et al. (2001); Wu et al. (2001); Ghazzali et al. (2008). For background to the properties and applications of phenanthroline complexes, see: Juris et al. (1988); D'Angelantonio et al. (1991); Balzani et al. (1996); Mills et al. (1997); Yang et al. (1997); Miyasaka et al. (2001); Plonska et al. (2002); Winkler et al. (2006).

Experimental top

The transition metal complex salt, [RuII(phen)3](ClO4)2 was prepared according to the procedure described by Burstall et al., 1952 and was recrystallized from methanol.

Refinement top

The solvent/anion region is highly disordered and the final difference minimum and maximum (-1.15 and 2.62 e Å-3) indicate an its imperfect modeling. The highest difference peak corresponds to solvent accessible void in the crystal lattice. The disordered perchlorate anion B and C are modeled in two alternative conformations with geometric restraints (DFIX and SADI instructions). Additionally, displacement parameter restraints (DELU and ISOR instructions) are applied for anion B. Due to a serious disorder of perchlorate anion C, its oxygen atoms are refined isotropically. All H atoms were located in electron density difference maps. C-bonded hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95 Å and 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. For clarity, labels for atoms in the disordered perchlorate anions B and C are omitted.
Tris(1,10-phenanthroline-κ2N,N')ruthenium(II) bis(perchlorate) top
Crystal data top
[Ru(C12H8N2)3](ClO4)2F(000) = 3392
Mr = 840.57Dx = 1.662 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 28661 reflections
a = 35.408 (7) Åθ = 2.6–26.3°
b = 16.106 (3) ŵ = 0.69 mm1
c = 12.056 (2) ÅT = 100 K
β = 102.22 (3)°Plate, red
V = 6720 (2) Å30.22 × 0.19 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6867 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5365 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4052 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 4444
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2020
Tmin = 0.859, Tmax = 1.000l = 1415
28067 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1194P)2 + 53.7304P]
where P = (Fo2 + 2Fc2)/3
6867 reflections(Δ/σ)max = 0.001
545 parametersΔρmax = 2.55 e Å3
181 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Ru(C12H8N2)3](ClO4)2V = 6720 (2) Å3
Mr = 840.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.408 (7) ŵ = 0.69 mm1
b = 16.106 (3) ÅT = 100 K
c = 12.056 (2) Å0.22 × 0.19 × 0.10 mm
β = 102.22 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6867 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5365 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1.000Rint = 0.039
28067 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.1194P)2 + 53.7304P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.218Δρmax = 2.55 e Å3
S = 1.04Δρmin = 1.22 e Å3
6867 reflectionsAbsolute structure: ?
545 parametersFlack parameter: ?
181 restraintsRogers parameter: ?
H-atom parameters constrained
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
ClA0.50000.08518 (12)1.25000.0409 (4)
O1A0.4920 (2)0.0360 (6)1.1532 (7)0.137 (4)
O2A0.53245 (17)0.1346 (4)1.2483 (7)0.098 (2)
ClBA0.49125 (14)0.4508 (3)0.7332 (5)0.0377 (19)0.302 (6)
O1BA0.45000 (16)0.4625 (5)0.7094 (9)0.048 (3)0.302 (6)
O2BA0.5065 (3)0.4809 (5)0.6390 (9)0.062 (5)0.302 (6)
O3BA0.50000.3639 (3)0.75000.060 (3)0.605 (13)
O4BA0.5085 (3)0.4961 (5)0.8342 (8)0.064 (5)0.302 (6)
ClBB0.50000.4583 (5)0.75000.032 (2)0.395 (13)
O1BB0.5200 (4)0.5161 (10)0.8333 (10)0.046 (4)0.198 (6)
O2BB0.4835 (3)0.3927 (7)0.8057 (11)0.035 (4)0.198 (6)
O3BB0.5266 (3)0.4238 (8)0.6871 (10)0.044 (4)0.198 (6)
O4BB0.4697 (3)0.5022 (12)0.6740 (12)0.047 (4)0.198 (6)
ClCA0.26318 (8)0.5086 (2)0.4468 (2)0.0435 (11)0.552 (10)
O1CA0.2538 (2)0.5648 (4)0.3520 (5)0.064 (3)*0.552 (10)
O2CA0.23054 (19)0.5010 (6)0.4998 (7)0.277 (19)*0.552 (10)
O3CA0.2726 (3)0.4284 (3)0.4073 (7)0.091 (4)*0.552 (10)
O4CA0.29584 (19)0.5403 (5)0.5278 (6)0.092 (4)*0.552 (10)
ClCB0.2615 (2)0.5258 (6)0.4462 (7)0.166 (5)0.448 (10)
O1CB0.2576 (6)0.6144 (5)0.4546 (17)0.149 (9)*0.448 (10)
O2CB0.2292 (2)0.4858 (6)0.4795 (8)0.049 (3)*0.448 (10)
O3CB0.2619 (4)0.5039 (12)0.3306 (8)0.212 (14)*0.448 (10)
O4CB0.2969 (2)0.4984 (13)0.5192 (13)0.117 (6)*0.448 (10)
Ru10.379433 (12)0.21680 (3)0.62688 (4)0.03927 (19)
N80.42571 (13)0.2140 (3)0.7640 (4)0.0407 (11)
N360.33253 (14)0.2267 (3)0.4936 (5)0.0455 (12)
N290.40257 (13)0.2905 (3)0.5175 (4)0.0404 (11)
N220.35194 (13)0.1363 (4)0.7156 (4)0.0475 (12)
C260.33993 (17)0.0117 (5)0.7393 (6)0.0522 (16)
N10.36793 (14)0.3206 (4)0.7139 (5)0.0515 (13)
C310.44900 (18)0.3752 (4)0.4513 (6)0.0509 (15)
H310.47400.39980.46610.061*
C250.31696 (19)0.0092 (5)0.8174 (6)0.0602 (19)
H250.30440.03320.85100.072*
C170.42222 (17)0.0127 (4)0.4478 (5)0.0454 (13)
H170.43730.00550.39210.054*
C70.42374 (17)0.2736 (4)0.8443 (5)0.0468 (15)
C160.41419 (14)0.0922 (4)0.4812 (4)0.0360 (11)
H160.42390.13850.44700.043*
N150.39328 (12)0.1058 (3)0.5599 (4)0.0367 (10)
C350.33975 (18)0.2702 (4)0.4047 (6)0.0510 (16)
C300.43730 (16)0.3264 (3)0.5347 (5)0.0403 (12)
H300.45470.31870.60560.048*
C270.3471 (2)0.0933 (5)0.7063 (6)0.0586 (18)
H270.33580.13840.73860.070*
C110.4786 (2)0.2177 (4)0.9732 (5)0.0539 (17)
H110.49670.21791.04370.065*
C370.29761 (16)0.1926 (4)0.4833 (7)0.0560 (17)
H370.29240.16080.54480.067*
C390.2751 (2)0.2466 (6)0.2965 (8)0.077 (2)
H390.25540.25330.23010.093*
C120.4499 (2)0.2781 (4)0.9494 (6)0.0521 (17)
C400.3120 (2)0.2835 (5)0.3033 (7)0.066 (2)
C210.35678 (15)0.0539 (4)0.6894 (5)0.0441 (13)
C410.3230 (3)0.3303 (6)0.2160 (8)0.084 (3)
H410.30450.33970.14760.101*
C180.40855 (18)0.0547 (4)0.4948 (6)0.0501 (15)
H180.41410.10920.47240.060*
C140.4168 (2)0.4011 (5)0.9966 (7)0.067 (2)
H140.41500.44521.04760.080*
C20.33910 (19)0.3754 (5)0.6835 (8)0.063 (2)
H20.32230.37090.61110.076*
C40.3582 (2)0.4498 (5)0.8596 (8)0.071 (2)
H40.35420.49370.90830.086*
C90.45398 (16)0.1585 (4)0.7900 (5)0.0444 (13)
H90.45620.11730.73540.053*
C130.4454 (2)0.3449 (5)1.0251 (6)0.063 (2)
H130.46280.34931.09640.075*
C60.39295 (17)0.3319 (4)0.8162 (6)0.0493 (15)
C190.38602 (16)0.0429 (4)0.5768 (5)0.0451 (14)
C200.37928 (14)0.0384 (4)0.6065 (5)0.0380 (12)
C380.26831 (19)0.2015 (5)0.3861 (8)0.067 (2)
H380.24380.17640.38250.081*
C240.31276 (18)0.0892 (5)0.8445 (6)0.0612 (19)
H240.29780.10320.89850.073*
C420.3588 (3)0.3619 (6)0.2264 (8)0.079 (2)
H420.36510.39200.16490.095*
C330.3874 (2)0.3510 (4)0.3275 (6)0.0586 (17)
C230.33056 (17)0.1525 (5)0.7930 (6)0.0581 (18)
H230.32730.20850.81370.070*
C280.3692 (2)0.1095 (4)0.6305 (6)0.0595 (18)
H280.37380.16550.61230.071*
C50.3892 (2)0.3961 (5)0.8918 (6)0.0566 (17)
C100.48045 (17)0.1579 (4)0.8934 (5)0.0486 (15)
H100.49980.11610.90870.058*
C320.4242 (2)0.3874 (4)0.3480 (7)0.0584 (17)
H320.43190.42010.29110.070*
C340.37750 (17)0.3047 (4)0.4163 (6)0.0481 (14)
C30.3336 (2)0.4388 (5)0.7571 (8)0.074 (2)
H30.31220.47520.73540.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
ClA0.0410 (10)0.0385 (10)0.0390 (10)0.0000.0006 (8)0.000
O1A0.106 (5)0.182 (9)0.104 (5)0.037 (6)0.021 (4)0.086 (6)
O2A0.059 (3)0.079 (4)0.161 (7)0.008 (3)0.035 (4)0.029 (4)
ClBA0.045 (3)0.035 (3)0.029 (3)0.007 (2)0.002 (3)0.001 (2)
O1BA0.040 (5)0.052 (7)0.055 (7)0.002 (5)0.012 (5)0.014 (6)
O2BA0.053 (7)0.079 (8)0.060 (7)0.014 (7)0.027 (6)0.010 (6)
O3BA0.068 (6)0.043 (4)0.055 (6)0.0000.017 (5)0.000
O4BA0.053 (8)0.074 (8)0.066 (7)0.010 (7)0.012 (6)0.033 (7)
ClBB0.050 (4)0.026 (3)0.016 (3)0.0000.004 (3)0.000
O1BB0.050 (6)0.043 (6)0.043 (5)0.009 (4)0.008 (4)0.007 (4)
O2BB0.033 (6)0.035 (5)0.036 (6)0.002 (4)0.008 (4)0.002 (4)
O3BB0.043 (6)0.046 (6)0.045 (6)0.007 (4)0.015 (4)0.007 (4)
O4BB0.051 (6)0.045 (6)0.043 (5)0.007 (4)0.005 (4)0.006 (4)
ClCA0.0446 (18)0.0573 (19)0.0324 (15)0.0289 (13)0.0166 (12)0.0096 (11)
ClCB0.112 (7)0.231 (10)0.155 (8)0.029 (7)0.029 (6)0.011 (7)
Ru10.0236 (3)0.0438 (3)0.0511 (3)0.00316 (17)0.00957 (19)0.0083 (2)
N80.029 (2)0.052 (3)0.044 (3)0.011 (2)0.0141 (19)0.007 (2)
N360.027 (2)0.046 (3)0.062 (3)0.0037 (19)0.006 (2)0.009 (2)
N290.031 (2)0.036 (2)0.055 (3)0.0039 (18)0.011 (2)0.005 (2)
N220.027 (2)0.062 (3)0.054 (3)0.011 (2)0.011 (2)0.008 (3)
C260.033 (3)0.069 (4)0.052 (4)0.009 (3)0.005 (3)0.012 (3)
N10.033 (2)0.054 (3)0.072 (4)0.006 (2)0.022 (2)0.015 (3)
C310.044 (3)0.036 (3)0.076 (4)0.002 (2)0.020 (3)0.001 (3)
C250.041 (3)0.083 (5)0.056 (4)0.019 (3)0.010 (3)0.008 (4)
C170.039 (3)0.049 (3)0.047 (3)0.009 (3)0.008 (2)0.002 (3)
C70.036 (3)0.057 (4)0.053 (3)0.020 (3)0.021 (3)0.013 (3)
C160.029 (2)0.039 (3)0.038 (3)0.001 (2)0.003 (2)0.001 (2)
N150.026 (2)0.041 (2)0.042 (2)0.0037 (18)0.0020 (18)0.001 (2)
C350.033 (3)0.045 (3)0.070 (4)0.010 (2)0.001 (3)0.008 (3)
C300.035 (3)0.033 (3)0.054 (3)0.001 (2)0.011 (2)0.006 (2)
C270.048 (4)0.059 (4)0.067 (4)0.008 (3)0.008 (3)0.021 (3)
C110.053 (4)0.074 (5)0.037 (3)0.026 (3)0.014 (3)0.002 (3)
C370.025 (3)0.053 (4)0.085 (5)0.003 (3)0.002 (3)0.018 (3)
C390.041 (4)0.076 (5)0.098 (6)0.019 (4)0.021 (4)0.015 (4)
C120.053 (4)0.063 (4)0.045 (3)0.030 (3)0.023 (3)0.009 (3)
C400.044 (4)0.062 (5)0.080 (5)0.011 (3)0.010 (4)0.012 (4)
C210.028 (3)0.054 (4)0.049 (3)0.006 (2)0.004 (2)0.001 (3)
C410.071 (5)0.087 (6)0.079 (6)0.010 (5)0.022 (4)0.013 (5)
C180.043 (3)0.043 (3)0.063 (4)0.011 (3)0.006 (3)0.005 (3)
C140.080 (5)0.068 (5)0.065 (5)0.034 (4)0.044 (4)0.024 (4)
C20.039 (3)0.058 (4)0.098 (6)0.005 (3)0.026 (3)0.023 (4)
C40.063 (5)0.065 (5)0.097 (6)0.023 (4)0.043 (4)0.035 (4)
C90.034 (3)0.055 (4)0.046 (3)0.008 (3)0.012 (2)0.003 (3)
C130.067 (4)0.076 (5)0.052 (4)0.028 (4)0.025 (3)0.021 (4)
C60.041 (3)0.056 (4)0.059 (4)0.016 (3)0.027 (3)0.016 (3)
C190.036 (3)0.042 (3)0.053 (3)0.006 (2)0.001 (2)0.010 (3)
C200.026 (2)0.043 (3)0.042 (3)0.004 (2)0.000 (2)0.000 (2)
C380.031 (3)0.062 (4)0.101 (6)0.011 (3)0.005 (3)0.018 (4)
C240.035 (3)0.094 (6)0.058 (4)0.019 (3)0.019 (3)0.007 (4)
C420.081 (6)0.078 (6)0.071 (5)0.015 (5)0.002 (4)0.022 (4)
C330.057 (4)0.052 (4)0.065 (4)0.012 (3)0.007 (3)0.006 (3)
C230.032 (3)0.079 (5)0.066 (4)0.014 (3)0.018 (3)0.020 (4)
C280.053 (4)0.046 (4)0.074 (5)0.004 (3)0.000 (3)0.014 (3)
C50.051 (4)0.060 (4)0.069 (4)0.017 (3)0.038 (3)0.018 (3)
C100.041 (3)0.065 (4)0.040 (3)0.016 (3)0.007 (2)0.008 (3)
C320.060 (4)0.047 (4)0.072 (5)0.002 (3)0.022 (4)0.008 (3)
C340.037 (3)0.041 (3)0.062 (4)0.007 (2)0.004 (3)0.001 (3)
C30.049 (4)0.059 (4)0.123 (7)0.001 (3)0.040 (4)0.027 (5)
Geometric parameters (Å, º) top
ClA—O1A1.389 (6)C16—N151.339 (7)
ClA—O1Ai1.389 (6)C16—H160.9500
ClA—O2A1.402 (6)N15—C201.363 (7)
ClA—O2Ai1.402 (6)C35—C401.413 (10)
ClBA—O4BA1.4398 (8)C35—C341.427 (9)
ClBA—O1BA1.4399 (8)C30—H300.9500
ClBA—O3BA1.4400 (8)C27—C281.350 (11)
ClBA—O2BA1.4401 (8)C27—H270.9500
ClBB—O1BB1.4399 (8)C11—C101.373 (10)
ClBB—O3BB1.4399 (8)C11—C121.393 (11)
ClBB—O2BB1.4401 (8)C11—H110.9500
ClBB—O4BB1.4402 (11)C37—C381.399 (10)
ClCA—O2CA1.4399 (8)C37—H370.9500
ClCA—O4CA1.4402 (9)C39—C381.366 (13)
ClCA—O3CA1.4405 (8)C39—C401.421 (12)
ClCA—O1CA1.4407 (8)C39—H390.9500
ClCB—O4CB1.4400 (11)C12—C131.440 (10)
ClCB—O1CB1.4400 (8)C40—C411.415 (13)
ClCB—O2CB1.4400 (8)C21—C201.426 (8)
ClCB—O3CB1.4403 (8)C41—C421.347 (13)
Ru1—N222.053 (5)C41—H410.9500
Ru1—N362.058 (5)C18—C191.409 (9)
Ru1—N12.059 (5)C18—H180.9500
Ru1—N152.063 (5)C14—C131.347 (12)
Ru1—N82.067 (5)C14—C51.426 (11)
Ru1—N292.068 (5)C14—H140.9500
N8—C91.329 (8)C2—C31.393 (10)
N8—C71.376 (8)C2—H20.9500
N36—C371.334 (8)C4—C31.365 (12)
N36—C351.349 (9)C4—C51.387 (11)
N29—C301.335 (7)C4—H40.9500
N29—C341.368 (8)C9—C101.392 (8)
N22—C231.346 (8)C9—H90.9500
N22—C211.383 (8)C13—H130.9500
C26—C251.410 (10)C6—C51.403 (9)
C26—C211.410 (9)C19—C201.392 (8)
C26—C271.410 (11)C19—C281.444 (9)
N1—C21.340 (9)C38—H380.9500
N1—C61.370 (8)C24—C231.409 (10)
C31—C321.378 (10)C24—H240.9500
C31—C301.406 (9)C42—C331.421 (11)
C31—H310.9500C42—H420.9500
C25—C241.346 (11)C33—C321.401 (10)
C25—H250.9500C33—C341.409 (10)
C17—C181.361 (9)C23—H230.9500
C17—C161.388 (8)C28—H280.9500
C17—H170.9500C10—H100.9500
C7—C121.405 (9)C32—H320.9500
C7—C61.424 (10)C3—H30.9500
O1A—ClA—O1Ai110.5 (9)C31—C30—H30118.9
O1A—ClA—O2A109.5 (6)C28—C27—C26122.4 (6)
O1Ai—ClA—O2A108.3 (4)C28—C27—H27118.8
O1A—ClA—O2Ai108.3 (4)C26—C27—H27118.8
O1Ai—ClA—O2Ai109.5 (6)C10—C11—C12119.2 (6)
O2A—ClA—O2Ai110.8 (6)C10—C11—H11120.4
O4BA—ClBA—O1BA109.48 (6)C12—C11—H11120.4
O4BA—ClBA—O3BA109.49 (6)N36—C37—C38122.9 (8)
O1BA—ClBA—O3BA109.48 (6)N36—C37—H37118.5
O4BA—ClBA—O2BA109.48 (6)C38—C37—H37118.5
O1BA—ClBA—O2BA109.47 (6)C38—C39—C40119.4 (7)
O3BA—ClBA—O2BA109.44 (6)C38—C39—H39120.3
O1BB—ClBB—O3BB109.7 (2)C40—C39—H39120.3
O1BB—ClBB—O2BB109.7 (2)C11—C12—C7117.5 (6)
O3BB—ClBB—O2BB109.7 (2)C11—C12—C13124.4 (7)
O1BB—ClBB—O4BB108.4 (12)C7—C12—C13118.0 (7)
O3BB—ClBB—O4BB109.7 (2)C35—C40—C41118.4 (7)
O2BB—ClBB—O4BB109.7 (3)C35—C40—C39116.7 (8)
O2CA—ClCA—O4CA109.52 (6)C41—C40—C39125.0 (8)
O2CA—ClCA—O3CA109.50 (6)N22—C21—C26122.5 (6)
O4CA—ClCA—O3CA109.46 (6)N22—C21—C20116.3 (5)
O2CA—ClCA—O1CA109.49 (6)C26—C21—C20121.1 (6)
O4CA—ClCA—O1CA109.44 (6)C42—C41—C40122.2 (7)
O3CA—ClCA—O1CA109.43 (6)C42—C41—H41118.9
O4CB—ClCB—O1CB110.1 (15)C40—C41—H41118.9
O4CB—ClCB—O2CB109.4 (3)C17—C18—C19119.2 (6)
O1CB—ClCB—O2CB109.4 (3)C17—C18—H18120.4
O4CB—ClCB—O3CB109.3 (3)C19—C18—H18120.4
O1CB—ClCB—O3CB109.3 (3)C13—C14—C5121.6 (7)
O2CB—ClCB—O3CB109.3 (3)C13—C14—H14119.2
N22—Ru1—N3693.6 (2)C5—C14—H14119.2
N22—Ru1—N194.6 (2)N1—C2—C3120.6 (8)
N36—Ru1—N196.9 (2)N1—C2—H2119.7
N22—Ru1—N1580.5 (2)C3—C2—H2119.7
N36—Ru1—N1588.90 (18)C3—C4—C5119.2 (7)
N1—Ru1—N15172.6 (2)C3—C4—H4120.4
N22—Ru1—N887.27 (19)C5—C4—H4120.4
N36—Ru1—N8176.5 (2)N8—C9—C10123.2 (6)
N1—Ru1—N879.6 (2)N8—C9—H9118.4
N15—Ru1—N894.60 (18)C10—C9—H9118.4
N22—Ru1—N29172.08 (19)C14—C13—C12121.3 (7)
N36—Ru1—N2979.7 (2)C14—C13—H13119.4
N1—Ru1—N2990.4 (2)C12—C13—H13119.4
N15—Ru1—N2995.09 (18)N1—C6—C5123.4 (6)
N8—Ru1—N2999.70 (19)N1—C6—C7116.3 (5)
C9—N8—C7116.8 (5)C5—C6—C7120.3 (6)
C9—N8—Ru1129.3 (4)C20—C19—C18117.4 (6)
C7—N8—Ru1113.4 (4)C20—C19—C28118.3 (6)
C37—N36—C35117.9 (6)C18—C19—C28124.3 (6)
C37—N36—Ru1128.2 (5)N15—C20—C19123.1 (5)
C35—N36—Ru1113.8 (4)N15—C20—C21117.1 (5)
C30—N29—C34117.9 (5)C19—C20—C21119.8 (5)
C30—N29—Ru1128.8 (4)C39—C38—C37119.6 (7)
C34—N29—Ru1113.3 (4)C39—C38—H38120.2
C23—N22—C21117.3 (6)C37—C38—H38120.2
C23—N22—Ru1129.6 (5)C25—C24—C23120.2 (7)
C21—N22—Ru1113.0 (4)C25—C24—H24119.9
C25—C26—C21117.5 (7)C23—C24—H24119.9
C25—C26—C27125.0 (7)C41—C42—C33121.3 (8)
C21—C26—C27117.5 (6)C41—C42—H42119.4
C2—N1—C6117.9 (6)C33—C42—H42119.4
C2—N1—Ru1128.1 (5)C32—C33—C34117.3 (6)
C6—N1—Ru1114.0 (4)C32—C33—C42124.5 (8)
C32—C31—C30119.8 (6)C34—C33—C42118.1 (7)
C32—C31—H31120.1N22—C23—C24122.4 (7)
C30—C31—H31120.1N22—C23—H23118.8
C24—C25—C26120.0 (7)C24—C23—H23118.8
C24—C25—H25120.0C27—C28—C19120.9 (7)
C26—C25—H25120.0C27—C28—H28119.6
C18—C17—C16120.2 (6)C19—C28—H28119.6
C18—C17—H17119.9C4—C5—C6117.1 (7)
C16—C17—H17119.9C4—C5—C14124.4 (7)
N8—C7—C12123.3 (6)C6—C5—C14118.5 (7)
N8—C7—C6116.3 (6)C11—C10—C9119.9 (7)
C12—C7—C6120.4 (6)C11—C10—H10120.0
N15—C16—C17122.3 (5)C9—C10—H10120.0
N15—C16—H16118.9C31—C32—C33119.4 (7)
C17—C16—H16118.9C31—C32—H32120.3
C16—N15—C20117.7 (5)C33—C32—H32120.3
C16—N15—Ru1129.2 (4)N29—C34—C33123.2 (6)
C20—N15—Ru1113.1 (4)N29—C34—C35116.1 (6)
N36—C35—C40123.5 (6)C33—C34—C35120.7 (6)
N36—C35—C34117.1 (6)C4—C3—C2121.5 (8)
C40—C35—C34119.4 (7)C4—C3—H3119.2
N29—C30—C31122.2 (6)C2—C3—H3119.2
N29—C30—H30118.9
Symmetry code: (i) x+1, y, z+5/2.
Acknowledgements top

This work was supported by the HOMING PLUS project of the Foundation for Polish Science (MK and PR). The X-ray diffractometer was funded by the EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project: POPW.01.03.00–20–034/09–00.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759–772.

Breu, J. & Stoll, A. J. (1996). Acta Cryst. C52, 1174–1177.

Burstall, F. H. & Nyholm, R. S. (1952). J. Chem. Soc. pp. 3570–3579.

D'Angelantonio, M., Mulazzani, Q. G., Venturi, M., Ciano, M. & Hoffman, M. Z. (1991). J. Phys. Chem. 95, 5121–5129.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Ghazzali, M., Öhrström, L., Lincoln, P. & Langer, V. (2008). Acta Cryst. C64, m243–m245.

Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zalewsky, A. (1988). Coord. Chem. Rev. 84, 85–99.

Maloney, D. J. & MacDonnell, F. M. (1997). Acta Cryst. C53, 705–707.

Mills, A. & Williams, F. C. (1997). Thin Solid Films, 306, 163–170.

Miyasaka, H., Clearc, R., Campos-Fernandez, C. S. & Dunbar, K. R. (2001). Inorg. Chem. 40, 1663–1669.

Otsuka, T., Sekine, A., Fujigasaki, N., Ohashi, Y. & Kaizu, Y. (2001). Inorg. Chem. 40, 3406–3412.

Plonska, M. E., Dubis, A. & Winkler, K. (2002). J. Electroanal. Chem. 526, 77–84.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Winkler, K., Plonska, M. E., Recko, K. & Dobrzynski, L. (2006). Electrochim. Acta, 51, 4544–4553.

Wu, J. Z., Zhou, Z.-Y. & Ji, L. N. (2001). Cryst. Res. Technol. 36, 101–105.

Yang, G., Wu, J. Z., Wang, L., Ji, L. N. & Tian, X. (1997). J. Inorg. Biochem. 66, 141–144.