supplementary materials


cv5351 scheme

Acta Cryst. (2012). E68, m1444    [ doi:10.1107/S1600536812044741 ]

Chlorido{N-[(diethylamino)dimethylsilyl]anilido-[kappa]N}(N,N,N',N'-tetramethylethane-1,2-diamine-[kappa]2N,N')iron(II)

J. Chen

Abstract top

In the title iron(II) complex, [Fe(C12H21N2Si)Cl(C6H16N2)], the FeII cation is coordinated by two N atoms from the tetramethylethane-1,2-diamine ligand [Fe-N = 2.191 (5) and 2.215 (4) Å], one N atom from the N-[(diethylamino)dimethylsilyl]anilide ligand [Fe-N = 1.943 (4) Å] and a chloride ligand [Fe-Cl = 2.2798 (16) Å] in a distorted tetrahedral geometry. The N-Si-N angle is 113.9 (3)°. The crystal packing exhibits no short intermolecular contacts.

Comment top

Metal amides have valuable applications in various industrial and biological processes (Holm et al., 1996; Kempe, 2000). Group 4 metals amides supported with the N-silylated anilido ligands are active catalysts for olefin polymerization (Gibson et al., 1998; Hill & Hitchcock, 2002). Moreover, a class of monoionic N-silylated anilido ligands bearing a pendant amino group were paid much attentions. It was presumed that the empty d-orbitals on silicon would interact with the lone-pair electrons on the p-orbital of nitrogen center through d—pπ interaction throughout the N—Si—N motif. Analogous compounds with different metals including Zn (Schumann et al., 2000) and Zr (Chen, 2009) have been synthesized. A group of zirconium amides with the similar ligand were reported showing good performance in ethylene polymerization (Yuan et al., 2010). On the other hand, some iron(II) complexes with the N-donor ligands were active in fixation of dinitrogen (Smith et al., 2001; Rodriguez et al., 2011). Here, the synthesis and crystal structure of a new iron(II) anilido-complex will be described.

The title compound, (I), was prepared by a one-pot reaction of n-LiBu, N-[(diethylamino)dimethylsilyl]aniline, 1,2-bis(dimethylamino)ethane (tmeda) and FeCl2. The suitable for X-ray investigation single-crystal of (I) was obtained by recrystallization in toluene. In (I) , the metal Fe center is coordinated by a chlorido ligand, a chelating tmeda molecule and the anilido-ligand. The neutral donor molecule coordinates metal center in N,N'-chelating mode. Though the anilido-ligand has a pendant amino group, exhibting an N—Si—N chelating moiety, it connects Fe(II) only with a σ-bond, Fe—Nanilide being 1.943 (4) Å. It suggests the less affinity between the pendant amino-group and the metal center in comparing with tmeda. The N1—Si1—N2 angle is 113.9 (3)°. The four-coordinate Fe atom demonstrates a slightly distorted tetrahedral geometry. In an iron(III) complex with the similar ligand, the N—Si—N unit bit the FeIII metal center and the angle was 95.49 (9)° (Chen, 2008).

Related literature top

For FeII complexes with N-donor ligand and utility in fixation of dinitrogen, see: Smith et al. (2001); Rodriguez et al. (2011). For reviews of related metal amides, see: Holm et al. (1996); Kempe (2000). For catalytic applications of the related N-silylated analido group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998); Hill & Hitchcock (2002); Yuan et al. (2010). For related organometallic compounds with analogous analido ligands, see: Schumann et al. (2000); Chen (2008, 2009).

Experimental top

A solution of n-LiBu (1.6 M, 2.1 ml, 3.3 mmol) in hexane was slowly added into a mixture of N-[(diethylamino)dimethylsilyl]aniline (0.73 g, 3.3 mmol) and tmeda (0.38 g, 3.3 mmol) in Et2O (20 ml) at 273 K by syringe. The mixture was stirred at room temperature for two hours and then added to a stirring suspension of FeCl2 (0.42 g, 3.3 mmol) in Et2O (20 ml) at 273 K. The resulting mixture was stirred at room temperature for 8 h. Then all the volatiles were removed under vacuum. The residue was extracted with toluene (25 ml). The filtrate was concentrated to 2 ml to yield the title compound as colorless crystals (yield 1.07 g, 76%; m.p. 357–358 K). MS (EI, 70 eV): m/z 429 [M]+. Anal. Calc. for C18H37ClFeN4Si: C, 50.40; H, 8.70; N, 13.06%. Found: C, 50.08; H, 8.61; N, 12.98%.

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C–C, C–N and C–Si bonds. The methylene H atoms were constrained with C—H distances of 0.97 Å and Uiso(H) = 1.2Ueq(C). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Chlorido{N-[(diethylamino)dimethylsilyl]anilido- κN}(N,N,N',N'-tetramethylethane- 1,2-diamine-κ2N,N')iron(II) top
Crystal data top
[Fe(C12H21N2Si)Cl(C6H16N2)]F(000) = 920
Mr = 428.91Dx = 1.187 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3162 reflections
a = 16.2317 (10) Åθ = 2.2–25.3°
b = 10.7821 (6) ŵ = 0.80 mm1
c = 14.2098 (8) ÅT = 293 K
β = 105.157 (1)°Block, colourless
V = 2400.4 (2) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
4222 independent reflections
Radiation source: fine-focus sealed tube2584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1914
Tmin = 0.826, Tmax = 0.890k = 1112
12665 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1016P)2 + 1.3944P]
where P = (Fo2 + 2Fc2)/3
4222 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.71 e Å3
14 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Fe(C12H21N2Si)Cl(C6H16N2)]V = 2400.4 (2) Å3
Mr = 428.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2317 (10) ŵ = 0.80 mm1
b = 10.7821 (6) ÅT = 293 K
c = 14.2098 (8) Å0.25 × 0.20 × 0.15 mm
β = 105.157 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
4222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2584 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.890Rint = 0.053
12665 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.190Δρmax = 0.71 e Å3
S = 1.02Δρmin = 0.65 e Å3
4222 reflectionsAbsolute structure: ?
226 parametersFlack parameter: ?
14 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.82680 (5)0.53246 (6)0.32605 (5)0.0438 (3)
Si10.67995 (11)0.45040 (15)0.42532 (12)0.0577 (5)
Cl10.89234 (12)0.69105 (14)0.42333 (13)0.0771 (5)
N10.7543 (3)0.4097 (4)0.3648 (3)0.0482 (11)
N20.5867 (4)0.3658 (6)0.3912 (5)0.0988 (17)
N30.7721 (3)0.6122 (4)0.1794 (3)0.0625 (13)
N40.9258 (3)0.4720 (4)0.2568 (3)0.0591 (12)
C10.7874 (3)0.2877 (4)0.3770 (3)0.0434 (12)
C20.8678 (4)0.2640 (5)0.4374 (4)0.0542 (14)
H2A0.89870.32860.47340.065*
C30.9035 (4)0.1458 (5)0.4455 (4)0.0598 (15)
H3A0.95850.13310.48470.072*
C40.8583 (5)0.0484 (5)0.3961 (5)0.0659 (17)
H4A0.88160.03090.40240.079*
C50.7778 (5)0.0696 (5)0.3371 (5)0.0732 (19)
H5A0.74640.00380.30320.088*
C60.7430 (4)0.1871 (5)0.3275 (4)0.0622 (16)
H6A0.68850.19920.28690.075*
C70.7246 (5)0.4311 (8)0.5602 (5)0.095 (2)
H7A0.73760.34520.57490.142*
H7B0.68330.45850.59330.142*
H7C0.77570.47950.58160.142*
C80.6537 (5)0.6178 (6)0.3978 (6)0.084 (2)
H8A0.63070.62830.32880.126*
H8B0.70460.66670.41930.126*
H8C0.61240.64420.43120.126*
C90.5430 (6)0.3069 (9)0.4576 (7)0.1194 (19)
H9A0.56350.34360.52180.143*
H9B0.48230.32410.43490.143*
C100.5550 (7)0.1785 (11)0.4652 (9)0.166 (3)
H10A0.52500.14550.50950.250*
H10B0.61480.16070.48910.250*
H10C0.53350.14120.40220.250*
C110.5383 (5)0.3602 (8)0.2873 (7)0.102 (3)
H11A0.52740.27400.26850.123*
H11B0.57300.39520.24780.123*
C120.4542 (6)0.4289 (10)0.2661 (11)0.170 (5)
H12A0.42570.42170.19800.255*
H12B0.46450.51490.28270.255*
H12C0.41900.39390.30410.255*
C130.6850 (5)0.5640 (8)0.1353 (6)0.106 (3)
H13A0.66290.60020.07200.159*
H13B0.64840.58520.17620.159*
H13C0.68710.47550.12930.159*
C140.7685 (6)0.7484 (6)0.1864 (5)0.099 (3)
H14A0.74490.78280.12270.148*
H14B0.82510.78040.21260.148*
H14C0.73330.77080.22850.148*
C150.8280 (5)0.5752 (7)0.1178 (5)0.079 (2)
H15A0.82510.63710.06760.095*
H15B0.80830.49700.08610.095*
C160.9170 (5)0.5619 (6)0.1763 (5)0.079 (2)
H16A0.93800.64210.20320.095*
H16B0.95190.53510.13420.095*
C171.0132 (5)0.4808 (8)0.3220 (6)0.097 (2)
H17A1.05360.45340.28780.145*
H17B1.01750.42930.37820.145*
H17C1.02510.56530.34230.145*
C180.9109 (5)0.3440 (6)0.2185 (5)0.087 (2)
H18A0.95550.32090.18910.131*
H18B0.85690.34010.17070.131*
H18C0.91060.28820.27100.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0509 (5)0.0347 (4)0.0478 (4)0.0028 (3)0.0164 (3)0.0015 (3)
Si10.0617 (11)0.0552 (10)0.0614 (10)0.0002 (8)0.0253 (9)0.0016 (7)
Cl10.0842 (12)0.0554 (9)0.0855 (11)0.0140 (8)0.0114 (10)0.0227 (8)
N10.052 (3)0.035 (2)0.060 (3)0.001 (2)0.019 (2)0.000 (2)
N20.086 (4)0.094 (4)0.127 (4)0.019 (3)0.047 (3)0.011 (3)
N30.068 (3)0.060 (3)0.057 (3)0.007 (3)0.013 (3)0.010 (2)
N40.063 (3)0.060 (3)0.063 (3)0.006 (2)0.030 (3)0.004 (2)
C10.049 (3)0.042 (3)0.043 (3)0.002 (2)0.018 (3)0.002 (2)
C20.066 (4)0.047 (3)0.052 (3)0.005 (3)0.019 (3)0.005 (2)
C30.065 (4)0.062 (4)0.055 (3)0.011 (3)0.019 (3)0.012 (3)
C40.087 (5)0.043 (3)0.076 (4)0.009 (3)0.037 (4)0.007 (3)
C50.080 (5)0.041 (3)0.103 (5)0.010 (3)0.032 (4)0.018 (3)
C60.057 (4)0.054 (3)0.073 (4)0.005 (3)0.012 (3)0.016 (3)
C70.108 (6)0.116 (6)0.065 (4)0.014 (5)0.032 (4)0.007 (4)
C80.084 (5)0.062 (4)0.119 (6)0.013 (4)0.050 (5)0.002 (4)
C90.107 (4)0.114 (4)0.143 (5)0.024 (4)0.043 (4)0.020 (4)
C100.151 (6)0.146 (6)0.186 (6)0.016 (6)0.015 (6)0.038 (6)
C110.062 (5)0.099 (6)0.135 (7)0.013 (4)0.006 (5)0.007 (5)
C120.087 (7)0.137 (9)0.260 (15)0.010 (7)0.001 (9)0.013 (9)
C130.087 (6)0.140 (7)0.075 (5)0.002 (5)0.006 (5)0.015 (5)
C140.131 (7)0.059 (4)0.102 (6)0.027 (4)0.022 (5)0.034 (4)
C150.098 (6)0.083 (5)0.063 (4)0.013 (4)0.034 (4)0.021 (3)
C160.092 (6)0.076 (4)0.085 (5)0.002 (4)0.049 (4)0.016 (4)
C170.060 (5)0.128 (7)0.102 (6)0.022 (4)0.022 (4)0.007 (5)
C180.128 (7)0.072 (4)0.082 (5)0.022 (4)0.064 (5)0.001 (4)
Geometric parameters (Å, º) top
Fe1—N11.943 (4)C8—H8B0.9600
Fe1—N42.191 (5)C8—H8C0.9600
Fe1—N32.215 (4)C9—C101.399 (11)
Fe1—Cl12.2798 (16)C9—H9A0.9700
Si1—N11.713 (5)C9—H9B0.9700
Si1—N21.726 (7)C10—H10A0.9600
Si1—C81.872 (7)C10—H10B0.9600
Si1—C71.876 (7)C10—H10C0.9600
N1—C11.414 (6)C11—C121.513 (11)
N2—C91.464 (10)C11—H11A0.9700
N2—C111.481 (9)C11—H11B0.9700
N3—C151.470 (8)C12—H12A0.9600
N3—C141.474 (8)C12—H12B0.9600
N3—C131.483 (9)C12—H12C0.9600
N4—C161.477 (8)C13—H13A0.9600
N4—C181.479 (8)C13—H13B0.9600
N4—C171.481 (9)C13—H13C0.9600
C1—C21.386 (7)C14—H14A0.9600
C1—C61.387 (7)C14—H14B0.9600
C2—C31.392 (8)C14—H14C0.9600
C2—H2A0.9300C15—C161.473 (10)
C3—C41.365 (8)C15—H15A0.9700
C3—H3A0.9300C15—H15B0.9700
C4—C51.375 (9)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.379 (8)C17—H17A0.9600
C5—H5A0.9300C17—H17B0.9600
C6—H6A0.9300C17—H17C0.9600
C7—H7A0.9600C18—H18A0.9600
C7—H7B0.9600C18—H18B0.9600
C7—H7C0.9600C18—H18C0.9600
C8—H8A0.9600
N1—Fe1—N4119.58 (18)C10—C9—N2113.4 (9)
N1—Fe1—N3114.07 (19)C10—C9—H9A108.9
N4—Fe1—N381.55 (19)N2—C9—H9A108.9
N1—Fe1—Cl1124.06 (14)C10—C9—H9B108.9
N4—Fe1—Cl1102.41 (14)N2—C9—H9B108.9
N3—Fe1—Cl1106.74 (14)H9A—C9—H9B107.7
N1—Si1—N2113.9 (3)C9—C10—H10A109.5
N1—Si1—C8107.1 (3)C9—C10—H10B109.5
N2—Si1—C8108.4 (3)H10A—C10—H10B109.5
N1—Si1—C7110.5 (3)C9—C10—H10C109.5
N2—Si1—C7107.7 (4)H10A—C10—H10C109.5
C8—Si1—C7109.1 (4)H10B—C10—H10C109.5
C1—N1—Si1118.1 (3)N2—C11—C12113.2 (9)
C1—N1—Fe1115.5 (3)N2—C11—H11A108.9
Si1—N1—Fe1121.7 (2)C12—C11—H11A108.9
C9—N2—C11113.9 (7)N2—C11—H11B108.9
C9—N2—Si1125.8 (6)C12—C11—H11B108.9
C11—N2—Si1119.9 (5)H11A—C11—H11B107.7
C15—N3—C14110.7 (5)C11—C12—H12A109.5
C15—N3—C13108.8 (6)C11—C12—H12B109.5
C14—N3—C13109.1 (6)H12A—C12—H12B109.5
C15—N3—Fe1107.3 (4)C11—C12—H12C109.5
C14—N3—Fe1109.6 (4)H12A—C12—H12C109.5
C13—N3—Fe1111.4 (4)H12B—C12—H12C109.5
C16—N4—C18110.7 (5)N3—C13—H13A109.5
C16—N4—C17109.0 (6)N3—C13—H13B109.5
C18—N4—C17109.1 (6)H13A—C13—H13B109.5
C16—N4—Fe1102.6 (4)N3—C13—H13C109.5
C18—N4—Fe1112.0 (4)H13A—C13—H13C109.5
C17—N4—Fe1113.2 (4)H13B—C13—H13C109.5
C2—C1—C6116.7 (5)N3—C14—H14A109.5
C2—C1—N1120.8 (4)N3—C14—H14B109.5
C6—C1—N1122.4 (5)H14A—C14—H14B109.5
C1—C2—C3121.6 (5)N3—C14—H14C109.5
C1—C2—H2A119.2H14A—C14—H14C109.5
C3—C2—H2A119.2H14B—C14—H14C109.5
C4—C3—C2120.3 (6)N3—C15—C16110.9 (6)
C4—C3—H3A119.8N3—C15—H15A109.5
C2—C3—H3A119.8C16—C15—H15A109.5
C3—C4—C5118.9 (6)N3—C15—H15B109.5
C3—C4—H4A120.5C16—C15—H15B109.5
C5—C4—H4A120.5H15A—C15—H15B108.0
C4—C5—C6120.8 (6)C15—C16—N4112.5 (6)
C4—C5—H5A119.6C15—C16—H16A109.1
C6—C5—H5A119.6N4—C16—H16A109.1
C5—C6—C1121.6 (6)C15—C16—H16B109.1
C5—C6—H6A119.2N4—C16—H16B109.1
C1—C6—H6A119.2H16A—C16—H16B107.8
Si1—C7—H7A109.5N4—C17—H17A109.5
Si1—C7—H7B109.5N4—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
Si1—C7—H7C109.5N4—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
Si1—C8—H8A109.5N4—C18—H18A109.5
Si1—C8—H8B109.5N4—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
Si1—C8—H8C109.5N4—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
Acknowledgements top

This work was supported by grants from the Natural Science Foundation of China (20702029) and the Natural Science Foundation of Shanxi Province (2008011024).

references
References top

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, J. (2008). Acta Cryst. E64, m938.

Chen, J. (2009). Acta Cryst. E65, m1307.

Gibson, V. C., Kimberley, B. S., White, A. J. P., Willianms, D. J. & Howard, P. (1998). Chem. Commun. pp. 313–314.

Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 3258–3262.

Holm, R. H., Kenneppohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.

Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468–493.

Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. (2011). Science, 334, 780–783.

Schumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747–758.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2001). Chem. Commun. pp. 1542–1543.

Yuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085–2092.